Automation and Remote Control

, Volume 74, Issue 11, pp 1851–1862 | Cite as

Robust control for a network of electric power generators

  • A. L. Fradkov
  • I. B. Furtat
Robust and Adaptive Systems

Abstract

We solve the robust control problem for a network of electric power generators whose mathematical model is represented by a system of third order differential-algebraic equations with parameters that are not known a priori. In our solution, we assume that only relative angular velocities of generator rotors are available for observation. We obtain a control algorithm that ensures network synchronization with the necessary accuracy in both standard mode of operation and in emergencies related to abrupt changes in the transmission line resistance. Operation of the proposed scheme is demonstrated with a numerical example dealing with a network of three generators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prangishvili, I.V., Ambartsumyan, A.A., Poletykin, A.G., et al., The Level of Automation of Power Systems and Systems Solutions Aimed at Increasing It, Probl. Upravlen., 2003, no. 2, pp. 11–26.Google Scholar
  2. 2.
    Kobets, B.B., Volkova, I.O., and Okorokov, V.R., Smart Grid as a Concept of Innovative Power Systems Development Abroad, Energoekspert, 2010, no. 2, pp. 52–58.Google Scholar
  3. 3.
    Guo, G., Hill, D.J., and Wang, Y., Robust Decentralized Control of a Class of Nonlinear Systems and Applications to Multimachine Power System Stabilization, Proc. 36 Conf. Decision & Control, San Diego, 1997, pp. 3102–3107.Google Scholar
  4. 4.
    Wang, Y., Hill, D.J., and Guo, G., Robust Decentralized Control for Multimachine Power Systems, IEEE Trans. Circuits Syst. I: Fundament. Theory Appl., 1998, vol. 45, no. 3, pp. 271–279.CrossRefGoogle Scholar
  5. 5.
    Guo, G., Hill, D.J., and Wang, Y., Robust Decentralized Excitation Control of Multimachine Power Systems, Proc. Am. Control Conf., San Diego, 1999, pp. 3833–3837.Google Scholar
  6. 6.
    Guo, G., Hill, D.J., and Wang, Y., Nonlinear Output Stabilization Control for Multimachine Power Systems, IEEE Trans. Circuits Syst. I, 2000, vol. 47, no. 1, pp. 46–53.CrossRefGoogle Scholar
  7. 7.
    Zhang, G.H., Wang, Y., and Hill, D.J., Global Control of Multi-Machine Power Systems for Transient Stability Enhancement, Proc. 16 IEEE Int. Conf. Control Appl., Singapore, 2007, pp. 934–939.Google Scholar
  8. 8.
    Bergan, A.R., Power Systems Analysis, New Jersey: Prentice-Hall, 1986.Google Scholar
  9. 9.
    Pai, M.A., Power System Stability, New York: North Holland, 1981.MATHGoogle Scholar
  10. 10.
    Anderson, P.M. and Fouad, A.A., Power System Control and Stability, Iowa: Iowa State Univ., 1977.Google Scholar
  11. 11.
    Qu, Z., Dorsey, J.F., Bond, J., and McCalley, J.D., Application of Robust Control to Sustained Oscillation in Power Systems, IEEE Trans. Circuits Syst. I: Fundament. Theory Appl., 1992, vol. 39, no. 6, pp. 470–476.CrossRefGoogle Scholar
  12. 12.
    Jiang, H., Dorsey, J.F., and Bond, J., Transient and Steady State Decentralized Control of Large Power Systems, Proc. 32 Conf. Decision Control, San Antonio, 1993, pp. 3716–3721.Google Scholar
  13. 13.
    Barabanov, A., Dib, W., Lamnabhi-Lagarrigue, F., and Ortega, R., On Transient Stabilization of Multi-Machine Power Systems: A “Globally” Convergent Controller for Structure-Preserving Models, Proc. 17 Word Congr. IFAC, Seoul, 2008, pp. 9398–9403.Google Scholar
  14. 14.
    Guisto, A., Ortega, R., and Stankovic, A., On Transient Stabilization of Power Systems: A Power-Shaping Solution for Structure-Preserving Models, Proc. 45 IEEE Conf. Decision & Control, San Diego, 2006, pp. 4027–4031.CrossRefGoogle Scholar
  15. 15.
    Ortega, R., Galaz, M., Astolfi, A., et al., Transient Stabilization of Multimachine Power Systems with Nontrivial Transfer Conductance, IEEE Trans. Automat. Control, 2005, vol. 50, no. 1, pp. 60–75.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Pogromsky, A.Yu., Fradkov, A.L., and Hill, D.J., Passivety Based Damping of Power System Oscillations, Proc. 35 Conf. Decision Control, Kobe, 1996, pp. 3876–3881.CrossRefGoogle Scholar
  17. 17.
    Kozlov, V.N. and Shashikhin, V.N., Design of a Coordinating Robust Control for Interrelated Synchronous Generators, Elektrichestvo, 2009, no. 9, pp. 20–26.Google Scholar
  18. 18.
    Kolesnikov, A.A., Sinergeticheskaya teoriya upravleniya (Synergetic Control Theory), Moscow: Energoatomizdat, 1994.Google Scholar
  19. 19.
    Pavlov, G.M. and Merkur’ev, G.V., Avtomatika energosistem (Automation of Power Systems), St. Petersburg: Tsentr Podgotovki Kadrov EES Ros., 2001.Google Scholar
  20. 20.
    Qiao, W., Sun, H., Wan, H., et al., Smart Transmission Grid: Vision and Framework, IEEE Trans. Smart Grid, 2010, vol. 1, no. 2, pp. 168–177.CrossRefGoogle Scholar
  21. 21.
    Tsykunov, A.M., Robust Control Algorithms with Compensation of Bounded Perturbations, Autom. Remote Control, 2007, vol. 68, no. 7, pp. 1213–1224.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Furtat, I.B., Robust Synchronization of Dynamical Networks with Compensation of Disturbances, Autom. Remote Control, 2011, vol. 72, no. 12, pp. 2516–2526.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Furtat, I.B., Robust Control of an Electric Generator with Compensation of Disturbances, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2011, no. 5, pp. 102–108.Google Scholar
  24. 24.
    Atassi, A.N. and Khalil, H.K., A Separation Principle for the Stabilization of Class of Nonlinear Systems, IEEE Trans. Automat. Control, 1999, vol. 44, no. 9, pp. 1672–1687.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Brusin, V.A., On a Class of Singularly Disturbed Adaptive Systems. I, Autom. Remote Control, 1995, vol. 56, no. 4, part 2, pp. 552–559.MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. L. Fradkov
    • 1
  • I. B. Furtat
    • 1
    • 2
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations