Automation and Remote Control

, Volume 74, Issue 5, pp 829–844 | Cite as

Decentralized adaptive control of synchronization of dynamic system networks at bounded disturbances

  • A. L. Fradkov
  • G. K. Grigor’ev
Robust and Adaptive Systems


The problem is considered for adaptive synchronization in the output of the network of interconnected nonlinear dynamic systems with bounded disturbances. The structure of a controller and the adaptation algorithm are found with the aid of the velocity gradient method and the passification method. The sufficient conditions of synchronization and the upper bound for the convergence set relative to the leading subsystem are given. The conditions of the accessibility of synchronization are also obtained for a certain class of monotone nonlipschitz nonlinearities. The results are illustrated by an example of synchronization of the network of interconnected Chua chains with disturbances.


Remote Control Goal Function Synchronization Condition Adaptive Synchronization Control Goal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Siljak, D.D., Decentralized Control of Complex Systems, Mathematics in Science and Engineering, vol. 184, Boston: Academic, 1990.MATHGoogle Scholar
  2. 2.
    Fradkov, A.L., Adaptivnoe upravlenie v slozhnykh sistemakh (Adaptive Control in Complex Systems), Moscow: Nauka, 1990.MATHGoogle Scholar
  3. 3.
    Druzhinina, M.V. and Fradkov, A.L., Adaptive Decentralized Control of Interconnected Systems, Proc. 14th IFAC World Congress, 1999, vol. 50, pp. 175–180.Google Scholar
  4. 4.
    Andrievsky, B.R., Matveev, A.S., and Fradkov, A.L., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communications, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Dzhunusov, I.A. and Fradkov, A.L., Adaptive Synchronization of a Network of Interconnected Nonlinear Lur’e Systems, Autom. Remote Control, 2009, vol. 70, no. 7, pp. 1190–1205.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 8, pp. 1615–1626.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Mitorshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami, St. Petersburg: Nauka, 2000. Translated under the title Nonlinear and Adaptive Control of Complex Systems, Dordrecht: Kluwer, 1999.Google Scholar
  8. 8.
    Fradkov, A.L., Passification of Nonsquare Linear Systems and Feedback Yakubovich-Kalman-Popov Lemma, Eur. J. Control, 2003, no. 6, pp. 573–582.Google Scholar
  9. 9.
    Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamic Objects), Moscow: Nauka, 1981.MATHGoogle Scholar
  10. 10.
    Chai Wah Wu and Chua, L.O., Synchronization in an Array of Linearly Coupled Dynamical Systems, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 1995, vol. 42, no. 8, pp. 430–447.MATHCrossRefGoogle Scholar
  11. 11.
    Alligood, K., Sauer, T., and Yorke, J., Chaos: An Introduction to Dynamical Systems, New York: Springer, 1996.MATHGoogle Scholar
  12. 12.
    Grigoriev, G.K. and Fradkov, A.L., Decentralized Adaptive Control of Network Synchronization of Dynamical Systems with White Noise, Informatika Sist. Upravlen., 2012, no. 1, pp. 175–182.Google Scholar
  13. 13.
    Fradkov, A.L., Grigoriev, G.K., and Selivanov, A.A., Decentralized Adaptive Controller for Synchronization of Dynamical Networks with Delays and Bounded Disturbances, Proc. 50th IEEE Conf. Dec. Control, Orlando, 2011, pp. 1110–1115.Google Scholar
  14. 14.
    Proskurnikov, A., Average Consensus in Symmetric Nonlinear Multi-Agent Networks with Nonhomogeneous Delays, Cybern. Phys., 2012, vol. 1, no. 2, pp. 128–133.MathSciNetGoogle Scholar
  15. 15.
    Yakubovich, V.A., The Solution of Certain Matrix Inequalities in Automatic Control Theory, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no. 6, pp. 1304–1307.MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. L. Fradkov
    • 1
    • 2
  • G. K. Grigor’ev
    • 2
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations