Automation and Remote Control

, Volume 73, Issue 10, pp 1604–1615 | Cite as

Nonlinear dynamics of drives with elasticities and friction

  • M. Ruderman
  • S. V. Aranovskii
  • A. A. Bobtsov
  • T. Bertram
Nonlinear Systems

Abstract

Control of drives with elasticity and frictions requires an insight into their nonlinear dynamics. A simple model of the dynamics of the drive with nonlinear friction and elasticities combined with the structural damping was proposed. The last fact gives rise to the hysteretic reciprocal force (moment) which, together with friction, brings into existence a second-order oscillatory system with the memory effect. The model obtained was tested on the precision drive of the rotary support of an optical telescope.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kragel’skii, I. and Gitis, N., Friktsionnye avtokolebaniya (Friction Autooscillations), Moscow: Nauka, 1987.Google Scholar
  2. 2.
    Andryushenko, V., Sledyashchie sistemy avtomatizirovannogo sborochnogo oborudovaniya (Servosystems of Automated Assembly Equipment), Leningrad: Mashinostroenie, 1979.Google Scholar
  3. 3.
    Pervozvanskii, A.A., System with Discontinuous Nonlinearities under High-Frequency Perturbations, Autom. Remote Control, 2000, vol. 61, no. 7, part 1, pp. 1103–1112.MathSciNetGoogle Scholar
  4. 4.
    Khlebalin, N. and Kostikov, A., A Library of Friction Models in SIMULINK (an Expertise in Design and Use), Tr. II nauchn. konf. “Proektirovanie inzhenernykh i nauchnykh prilozhenii v srede Matlab” (Proc. II Conf. “Design of Engineering and Scientific Applications in Matlab”), 2004, pp. 1611–1633.Google Scholar
  5. 5.
    Spong, M., Modeling and Control of Elastic Joint Robots, J. Dynam. Syst., Meas., Control, 1987, vol. 109, no. 4, pp. 310–319.MATHCrossRefGoogle Scholar
  6. 6.
    Ferretti, G., Magnani, G., and Rocco, P., Impedance Control for Elastic Joints Industrial Manipulators, IEEE Trans. Robot. Automat., 2004, vol. 20, no. 3, pp. 488–498.CrossRefGoogle Scholar
  7. 7.
    Ott, C., Albu-Schaeffer, A., Kugi, A., and Hirzinger, G., On the Passivity-Based Impedance Control of Flexible Joint Robots, IEEE Trans. Robot., 2008, vol. 24, no. 2, pp. 416–429.CrossRefGoogle Scholar
  8. 8.
    Thummel, M., Otter, M., and Bals, J., Vibration Control of Elastic Joint Robots by Inverse Dynamics Models, Solid Mechan. Appl., 2005, no. 130, pp. 343–354.Google Scholar
  9. 9.
    Zollo, L., Siciliano, B., Luca, A.D., Guglielmelli, E., et al., Compliance Control for an Anthropomorphic Robot with Elastic Joints: Theory and Experiments, J. Dynam. Syst., Meas., Control, 2005, vol. 127, no. 3, pp. 321–328.CrossRefGoogle Scholar
  10. 10.
    Dhaouadi, R., Ghorbel, F.H., and Gandhi, P.S., A New Dynamic Model of Hysteresis in Harmonic Drives, IEEE Trans. Ind. Electron., 2003, vol. 50, no. 6, pp. 1165–1171.CrossRefGoogle Scholar
  11. 11.
    Taghirad, H. and Belanger, P., A Nonlinear Model for Harmonic Drive Friction and Compliance, Proc. IEEE Int. Conf. Robot. Automat. (ICRA’97), 1997, pp. 248–253.Google Scholar
  12. 12.
    Tjahjowidodo, T., Al-Bender, F., and Brussel, H.V., Modeling and Identification of Nonlinear Torsional Stiffness in Harmonic Drive, Proc. 5 Eur. Nonlinear Dynam. Conf., 2005, pp. 1809–1816.Google Scholar
  13. 13.
    Al-Bender, F. and Swevers, J., Characterization of Friction Force Dynamics, IEEE Control Syst. Mag., 2008, vol. 28, no. 6, pp. 64–81.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Worden, K., Wong, C.X., Parlitz, U., Hornstein, A., et al., Identification of Pre-Sliding and Sliding Friction Dynamics: Grey Box and Black-Box Models, Mechan. Syst. Signal Proc., 2007, vol. 21, no. 1, pp. 514–534.CrossRefGoogle Scholar
  15. 15.
    Rizos, D. and Fassois, S., Friction Identification Based Upon the LuGre and Maxwell Slip Models, IEEE Trans. Control Syst. Technol., 2009, vol. 17, no. 1, pp. 153–160.CrossRefGoogle Scholar
  16. 16.
    Ruderman, M., Hoffmann, F., Krettek, J., Braun, J., et al., Robust Identification of Nonlinear Frictional Dynamics for Advanced Controller Design, Proc. IFAC 15 Sympos. Syst. Identificat. (SYSID2009), Saint-Malo, France, 2009, pp. 474–479.Google Scholar
  17. 17.
    Seyfferth, W., Maghzal, A.J., and Angeles, J., Nonlinear Modeling and Parameter Identification of Harmonic Drive Robotic Transmissions, Proc. IEEE Int. Conf. Robot. Automat., 1995, pp. 3027–3032.Google Scholar
  18. 18.
    Ruderman, M., Hoffmann, F., and Bertram, T., Modeling and Identification of Elastic Robot Joints with Hysteresis and Backlash, IEEE Trans. Ind. Electron., 2009, vol. 56, no. 10, pp. 3840–3847.CrossRefGoogle Scholar
  19. 19.
    Freidovich, L., Robertsson, A., Shiriaev, A., and Johansson, R., LuGre-Model-Based Friction Compensation, IEEE Trans. Control Syst. Technol., 2010, vol. 18, no. 1, pp. 194–200.CrossRefGoogle Scholar
  20. 20.
    Bliman, P. and Sorine, M., Friction Modelling by Hysteresis Operators: Application to Dahl, Stiction and Stribeck Effects, Proc. Conf. “Models of Hysteresis,” Trento, Italy, 1991, pp. 10–19.Google Scholar
  21. 21.
    Bliman, P. and Sorine, M., A System Theoretic Approach of Systems with Hysteresis. Application to Friction Modelling and Compensation, Proc. 2 Eur. Control Conf., Groningen, Netherlands, 1993, pp. 1844–1849.Google Scholar
  22. 22.
    Ruderman, M., Bertram, T., and Aranovskiy, S., Nonlinear Dynamic of Actuators with Elasticities and Friction, 5th IFAC Sympos. Mechatron. Syst., Cambridge, USA, 2010, pp. 255–260.Google Scholar
  23. 23.
    Canudas de Wit, C., Olsson, H., Aström, K.J., and Lischinsky, P., A New Model for Control of Systems with Friction, EEE Trans. Automat. Control, 1995, vol. 40, no. 3, pp. 419–425.MATHCrossRefGoogle Scholar
  24. 24.
    Stribeck, R., Die wesentlichen Eigenschaften der Gleit- und Rollenlager (The Basic Properties of Sliding and Rolling Bearings), Zeitschrift de Vereins Deutscher Ingenieur, 1902, no. 36, pp. 1341–1348, 1432–1438, 1463–1470.Google Scholar
  25. 25.
    Aström, K.J. and Canudas de Wit, C., Revisiting the LuGre Friction Model, IEEE Control Syst. Mag., 2008, vol. 28, no. 6, pp. 101–114.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bouc, R., Forced Vibration of Mechanical Systems with Hysteresis, Proc. 4 Conf. on Nonlinear Oscillat., 1967, p. 315.Google Scholar
  27. 27.
    Wen, Y.K., Method for Random Vibration of Hysteretic Systems, ASCE J. Eng. Mechan. Division, 1976, vol. 102, no. 2, pp. 249–263.Google Scholar
  28. 28.
    Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C., et al., Parameter Analysis of the Diferential Model of Hysteresis, J. Appl. Mechan., 2004, vol. 71, no. 3, pp. 342–349.MATHCrossRefGoogle Scholar
  29. 29.
    Vasil’ev, V.N., Tomasov, V.S., Shargorodskii, V.D., and Sadovnikov, M.A., State-of-the-Art and Outlooks for the Precision Electric Drives of High-precision Systems, Izv. Vyssh. Uchebn. Zaved., Priborostroenie, 2008, no. 6, pp. 5–11.Google Scholar
  30. 30.
    Arakelyan, A.K. and Afanas’ev, A.A., Ventil’nye elektricheskie mashiny (Valve Electric Machines), Moscow: Energoatomizdat, 1997.Google Scholar
  31. 31.
    Ruderman, M. and Bertram, T., Friction Model with Elasto-Plasticity for Advanced Control Applications, Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatron (AIM2010), Montreal, Canada, 2010, pp. 914–919.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. Ruderman
    • 1
  • S. V. Aranovskii
    • 2
  • A. A. Bobtsov
    • 2
  • T. Bertram
    • 1
  1. 1.Institute of Control Theory and System EngineeringTechnical University DortmundDortmundGermany
  2. 2.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations