Automation and Remote Control

, Volume 73, Issue 2, pp 369–380 | Cite as

Analysis of integer programming algorithms with L-partition and unimodular transformations

  • A. A. Kolokolov
  • T. G. Orlovskaya
  • M. F. Rybalka
Integer Programming Problems

Abstract

We study algorithms for solving integer linear programming problems, in particular, set packing and knapsack problems. We pay special attention to algorithms of lexicographic enumeration of L-classes and their combinations with other approaches. We study the problems of using unimodular transformations in order to improve the structure of the problems and speed up the algorithms. We construct estimates on the number of iterations for the algorithms that take into account the specific structure of the problems in question. We also show experimental results.

References

  1. 1.
    Beresnev, V.L., Diskretnye zadachi razmeshcheniya i polinomy ot bulevykh peremennykh (Discrete Assignment Problems and Polynomials of Boolean Variables), Novosibirsk: Inst. Mat., 2005.Google Scholar
  2. 2.
    Emelichev, V.A., Kovalev, M.M., and Kravtsov, M.K., Mnogogranniki, grafy, optimizatsiya (Polyhedra, Graphs, Optimization), Moscow: Nauka, 1981.MATHGoogle Scholar
  3. 3.
    Eremeev, A.V., Zaozerskaya, L.A., and Kolokolov, A.A., Set Packing Problem: Complexity, Algorithms, Experimental Studies, Diskret. Anal. Issled. Oper., ser. 2, vol. 7, no. 2, 2000, pp. 22–46.MathSciNetMATHGoogle Scholar
  4. 4.
    Kolokolov, A.A., Regular Partitions and Pruning in Integer Programming, Sib. Zh. Issled. Oper., 1994, no. 2, pp. 18–39.Google Scholar
  5. 5.
    Schrijver, A., Theory of Linear and Integer Programming, New York: Wiley, 1986. Translated under the title Teoriya lineinogo i tselochislennogo programmirovaniya, Moscow: Mir, 1991.MATHGoogle Scholar
  6. 6.
    Hu, T.C., Integer Programming and Network Flows, Addison-Wesley: Reading, Mass., 1969. Translated under the title Tselochislennoe programmirovanie i potoki v setyakh, Moscow: Mir, 1974.MATHGoogle Scholar
  7. 7.
    Shevchenko, V.N., Kachestvennye voprosy tselochislennogo programmirovaniya (Qualitative Aspects of Integer Programming), Moscow: Nauka, 1995.MATHGoogle Scholar
  8. 8.
    Kellerer, H., Pferschy, U., and Pisinger, D., Knapsack Problems, Berlin: Springer, 2004.MATHGoogle Scholar
  9. 9.
    Borndörfer, R., Aspects of Set Packing, Partitioning, and Covering, PhD Dissertation, Berlin: Technische Universität, 1998.Google Scholar
  10. 10.
    Devyaterikova, M.V., Kolokolov, A.A., and Kolosov, A.P, On one Approach to Discrete Production Planning Problems with Interval Data, Tr. Inst. Mat. Mekh., 2008, vol. 14, no. 2, pp. 48–57.Google Scholar
  11. 11.
    Zaozerskaya, L.A. and Kolokolov, A.A., Estimates of the Average Number of Iterations for Some Algorithms for the Set Packing Problem, Zh. Vychisl. Mat. Mat. Fiz., 2010, vol. 50, no. 2, pp. 242–248.MathSciNetMATHGoogle Scholar
  12. 12.
    Kolokolov, A.A. and Zaozerskaya, L.A., Upper Bounds on the Average Number of Iterations for Some Algorithms for the Knapsack Problem, Tr. VIII mezhdunar. konf. “Diskretnye modeli v teorii upravlyayushchikh sistem” (Proc. VIII Int. Conf. “Discrete Models in the Theory of Control Systems”), Moscow, 2009, pp. 101–106.Google Scholar
  13. 13.
    Kolokolov, A.A., Devyaterikova, M.V., and Zaozerskaya, L.A., Regulyarnye razbieniya v tselochislennom programmirovanii (Regular Partitions in Integer Programming), Omsk: Omsk. Gos. Univ., 2007.Google Scholar
  14. 14.
    Devyaterikova, M.V., Kolokolov, A.A., and Kolosov, A.P., Unimodular Transformations for Integer Programming Problems and Their Efficiency, Tr. Inst. Mat. Mekh., 2010, vol. 16, no. 2, pp. 48–62.Google Scholar
  15. 15.
    Krishnamoorthy, B. and Pataki G., Column Basis Reduction and Decomposable Knapsack Problems, Discret. Optim., 2009, vol. 6(3), pp. 242–270.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kolokolov, A.A. and Rybalka, M.F., Analysis and Solution of One Class of Set Packing Problems, Mat. ross. konf. “Diskretnaya optimizatsiya i issledovanie operatsii (Proc. Russian Conf. “Discrete Optimization and Operations Research”), Novosibirsk, 2010, p. 95.Google Scholar
  17. 17.
    Kolokolov, A.A. and Orlovskaya, T.G., On an Algorithm for Solving Integer Linear Programming Problems, Tr. Inst. Mat. Mekh., 2010, vol. 16, no. 3, pp. 140–145.Google Scholar
  18. 18.
    Kolokolov, A.A., On the L-Structure of Integer Linear Programming Problems, Syst. Modell. Optim.: Proc. 16th IFIP Conf. Model. Optim., 1993, pp. 756–760.Google Scholar
  19. 19.
    Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: Freeman, 1979. Translated under the title Vychislitel’nye mashiny i trudnoreshaemye zadachi, Moscow: Mir, 1982.MATHGoogle Scholar
  20. 20.
    Martello, S. and Toth, P., Knapsack Problems: Algorithms and Computer Implementation, New York: Wiley, 1990.Google Scholar
  21. 21.
    Rebennack, S., Oswald, M., Theis, D.O., et al., A Branch and Cut Solver for the Maximum Stable Set Problem, J. Combinat. Optim., 2011, vol. 21(4), pp. 434–457.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gandibleux, X., Delorme, X., and T’Kindt, V., An Ant Colony Optimisation Algorithm for the Set Packing Problem, ANTS Workshop, 2004, pp. 49–60.Google Scholar
  23. 23.
    Eremin, I.I., Teoriya lineinoi optimizatsii (Linear optimization theory), Yekaterinburg: UrO RAN, 1999.Google Scholar
  24. 24.
    Kolokolov, A.A. and Rybalka, M.F., Analysis of L-class Enumeration Algorithms for the Set Packing Problem, XIV Vseross. konf. “Matematicheskoe programmirovanie i prilozheniya” (Proc. XIV All-Russian Conf. “Mathematical Programming and Applications”: Inform. Bull.), Yekaterinburg, 2011, no. 12, p. 187.Google Scholar
  25. 25.
    Kolokolov, A.A. and Orlovskaya, T.G., Improving the L-Structure of the Knapsack Problem, XIV Vseross. konf. “Matematicheskoe programmirovanie i prilozheniya” (Proc. XIV All-Russian Conf. “Mathematical Programming and Applications”: Inform. Bull.), Yekaterinburg, 2011, no. 12, p. 186.Google Scholar
  26. 26.
    Kolokolov, A.A. and Orlovskaya, T.G., Studying the L-Structure of the Knapsack Problem, Mat. Ross. konf. “Diskretnaya optimizatsiya i issledovanie operatsii” (Proc. Russian Conf. “Discrete Optimization and Operations Research”), Novosibirsk, 2010, p. 96.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. A. Kolokolov
    • 1
  • T. G. Orlovskaya
    • 1
  • M. F. Rybalka
    • 1
  1. 1.Omsk Affiliated Institute of Mathematics, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations