Advertisement

Automation and Remote Control

, Volume 71, Issue 8, pp 1629–1647 | Cite as

Identification of the parameters of blood circulation system

  • A. P. Proshin
  • Yu. V. Solodyannikov
Control in Biological Systems and Medicine

Abstract

A formulation of the problem of parametric identification from measurements of periodic motion was considered using a mathematical model of the blood circulation system. A method for its numerical solution on the basis of the random global search algorithm was proposed. A software realization of the identification procedure as parallel computation processes in the symmetrical multiprocessor computer systems and the distributed computation environment was described. Practical applications were considered using the example of factor analysis of the origins of arterial hypertension and also medical and sport applications, including the noninvasive monitoring of the level of blood hemoglobin and some kinds of stimulants.

Keywords

Wireless Sensor Network Remote Control Cardiac Cycle Periodic Motion Blood Hemoglobin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guyton, A.C., Coleman, T.G., Cowley, A.W., Jr., et al., A Systems Analysis Approach to Understanding Long-Range Arterial Blood Pressure Control and Hypertension, Circulat. Res., 1974, vol. 35, pp. 237–255.Google Scholar
  2. 2.
    Shumakov, V.I., Zimin, N.K., Itkin, G.P., et al., Iskusstvennoe serdtse (Artificial Heart), Leningrad: Nauka, 1988.Google Scholar
  3. 3.
    Solodyannikov, Yu.V., Elementy matematicheskogo modelirovaniya i identifikatsiya sistemy krovoobrashcheniya (Elements of Mathematical Modeling and Identification of Blood Circulation System), Samara: Samar. Univ., 1994.Google Scholar
  4. 4.
    Teoreticheskoe issledovanie fiziologicheskikh sistem. Matematicheskoe modelirovanie (Theoretical Study of Physiological Systems. Mathematical Modeling), Amosov, N.M., Ed., Kiev: Naukova Dumka, 1977.Google Scholar
  5. 5.
    Shumakov, V.I., Novosel’tsev, V.N., Shtengol’d, E.Sh., et al., Modelirovanie fiziologicheskikh sistem organizma (Modeling of Organism’s Physiological Systems), Moscow: Meditsina, 1971.Google Scholar
  6. 6.
    Novosel’tsev, V.N., Teoriya upravleniya i biosistemy (Control Theory and Biosystems), Moscow: Nauka, 1978.Google Scholar
  7. 7.
    Itkin, G.P., Development and Study of Heart Prosthesis Control Systems Using Mathematical Modeling, Cand. Sci. (Eng.) Dissertation, Moscow, 1974.Google Scholar
  8. 8.
    Proshin, A.P. and Solodyannikov, Yu.V., Mathematical Modeling of Blood Circulation System and Its Practical Application, Autom. Remote Control, 2006, no. 2, pp. 329–341.Google Scholar
  9. 9.
    Proshin, A.P. and Solodyannikov, Yu.V., Modelirovanie i identificatsiya sistemy krovoobrashcheniya (Modeling and Identification of Blood Circulation System), Certificate of Computer Program Registration, no. 2005611059, Rospatent, 2005.Google Scholar
  10. 10.
    Ostapenko, T.I., Proshin, A.P., and Solodyannikov, Yu.V., Research on Blood Circulation System Identifiability, Autom. Remote Control, 2007, no. 7, pp. 1239–1255.Google Scholar
  11. 11.
    Neimark, Yu.I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii (Method of Point Maps in the Theory of Nonlinear Oscillations), Moscow: Nauka, 1972.Google Scholar
  12. 12.
    Ljung, L., System Identification: Theory for the User, Englewood Cliffs: Prentice Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol’zovatelya, Moscow: Nauka, 1991.MATHGoogle Scholar
  13. 13.
    Kleiber, M., Body Size and Metabolism, Hilgardia, 1932, no. 6, pp. 315–353.Google Scholar
  14. 14.
    Guyton, A.C., Jones, C.E., and Coleman, T.G., Circulatory Physiology. Cardiac Output and Its Regulation, Philadelphia: Saunders, 1973.Google Scholar
  15. 15.
    West, G.B., Brown, J.H., and Enquist, B.J., A General Model for the Origin of Allometric Scaling Laws in Biology, Science, 1997, no. 276, pp. 122–126.Google Scholar
  16. 16.
    Savage, V.M., Gillooly, J.F., Woodruff, W.H., et al., The Predominance of Quarter-power Scaling in Biology, Function. Ecology, 2004, no. 18, pp. 257–282.Google Scholar
  17. 17.
    Heldt, T. and Mark, R.G., Scaling Cardiovascular Parameters for Population Simulation, Comput. Cardiol., 2004, no. 31, pp. 133–136.Google Scholar
  18. 18.
    Rastrigin, L.A., Adaptatsiya slozhnykh sistem (Adaptation of Complex Systems), Riga: Zinatne, 1981.MATHGoogle Scholar
  19. 19.
    Hansen, P.B., Model Programs for Computational Science: A Programming Methodology for Multicomputers, Concurrency: Practice Experience, 1993, vol. 5, pp. 407–423.CrossRefGoogle Scholar
  20. 20.
    Guyton, A.C., Circulatory Physiology III. Arterial Pressure and Hypertension, Philadelphia: Saunders, 1980.Google Scholar
  21. 21.
    Socher, L., The Digital Home: Highly Promising, Highly Complex, Ann. Rev. Commun., 2007, vol. 61, pp. 237–244.Google Scholar
  22. 22.
    Gatzoulis, L. and Iakovidis, I., Wearable and Portable eHealth Systems. Technological Issues and Opportunities for Personalized Care, IEEE Engin. Medicin. Biolog. Magazin., 2007, no. 26(5), pp. 51–56.Google Scholar
  23. 23.
    Toumaz Sensium-Ultra Low Power Intelligent Sensor Interface and Transceiver Platform, www.toumaz.com/public/page.php?page=sensiumintro.
  24. 24.
    Lewis, F.L., Wireless Sensor Networks, Smart Environments: Technologies, Protocols, and Applications, Cook, D.J. and Das, S.K., Eds., New York: Wiley, 2004.Google Scholar
  25. 25.
    Merlin Excalibur—Data Aquisition Paddle, www.merlingear.com/excalibur.htm.
  26. 26.
    Nielsen-Kellerman SpeedCoach®XL Rowing Support, www.nkhome.com/rowing/speedcoachxl.html.
  27. 27.
    Korsakas, S., Vainoras, A., Miskinis, V., et al., Electrocardiosignals and Motion Signals Telemonitoring and Analysis System for Sportsmen, Comput. Cardiol., 2005, Sept. 25–28, 2005, pp. 363–366.Google Scholar
  28. 28.
    Baudouin, A. and Hawkins, D., A Biomechanical Review of Factors Affecting Rowing Performance, Br. J. Sport. Med., 2002, no. 36, pp. 396–402.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. P. Proshin
    • 1
  • Yu. V. Solodyannikov
    • 1
  1. 1.“Samara-Dialog” Co.SamaraRussia

Personalised recommendations