Automation and Remote Control

, Volume 71, Issue 7, pp 1452–1460 | Cite as

Parallel algorithm for solving linear programming problem under conditions of incomplete data

  • I. M. Sokolinskaya
  • L. B. Sokolinskii
Control Systems and Information Technologies


Approach to solve linear programming problem under nonformalized constraints is proposed. The approach is designed for multiprocessor computing systems with massive parallel processing.


Discriminant Analysis Remote Control Parallel Algorithm Parallel Version Parallel Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mazurov, Vl.D., On Optimization Problems with Ill-formalized Objective, in Parametricheskaya optimizatsiya (Parametric Optimization), Sverdlovsk: Ural. Nauch. Tsentr Akad. Nauk SSSR, 1985, pp. 51–53.Google Scholar
  2. 2.
    Eremin, I.I., General Theory of Stability in Linear Programming, Izv. Vyssh. Uchebn. Zaved. Mat., 1999, no. 12, pp. 43–52.Google Scholar
  3. 3.
    Mazurov, Vl.D., Metod komitetov v zadachakh optimizatsii i klassifikatsii (The Committee Method in Optimization and Recognition), Moscow: Nauka, 1990.zbMATHGoogle Scholar
  4. 4.
    McLachlan, G.J., Discriminant Analysis and Statistical Pattern Recognition, New York: Wiley, 1992.CrossRefGoogle Scholar
  5. 5.
    Sokolinskaya, I.M., A Synthesis of Simplex and Linear Correction Methods for Linear Optimization Problems with Unformalized Restrictions, Vychisl. Medod. Progr., 2005, vol. 6, no. 1, pp. 226–238.Google Scholar
  6. 6.
    Mazurov, Vl.D. and Sokolinskaya, I.M., Discrimination Analysis and Randomization in Linear Optimization Problems with not Formalized Restrictions, Pattern Recogn. Image Anal., 2005, vol. 15, no. 4.Google Scholar
  7. 7.
    Forrest, J.J.H. and Tomlin, J.A., Implementing the Simplex Method for the Optimization Subroutine Library, IBM Systems J., 1992, vol. 31, no. 1. pp. 11–25.zbMATHCrossRefGoogle Scholar
  8. 8.
    Ghosh, J. and Hwang, K., Critical Issues in Mapping Neural Networks on Message-passing Multicomputers, Proc. 15th Annual Int. Symp. on Computer Architecture, Honolulu, Hawaii, 1988, pp. 3–11.Google Scholar
  9. 9.
    Kennedy, J.V., Austin, J., Pack, R., and Cass, B., CNNAP—A Parallel Processing Architecture for Binary Neural Networks, Proc. IEEE Int. Conf. on Neural Networks (ICNN’95), Perth, Western Australia, 1995.Google Scholar
  10. 10.
    Eremin, I.I., Fejer Methods for the Strong Separability of Convex Polyhedral Sets, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12, pp. 33–43.Google Scholar
  11. 11.
    Stunke, C.B.L. and Reed, D.A., Hypercube Implementation of the Simplex Algorithm, Proc. 3rd Conf. on Hypercube Concurrent Computers and Applications, New York: ACM, 1989, vol. 2, pp. 1473–1482.Google Scholar
  12. 12.
    Lyu, J.J., Luh, H., and Lee, M.-C., Solving Linear Programming Problems on the Parallel Virtual Machine Environment, Am. J. Appl. Sci., 2004, vol. 1, no. 2, pp. 90–94.CrossRefGoogle Scholar
  13. 13.
    Molina, F.W., A Survey of Resource Directive Decomposition in Mathematical Programming, ACM Computing Surveys, 1979, vol. 11, no. 2, pp. 95–104.CrossRefGoogle Scholar
  14. 14.
    Martinson, R.K. and Tind, J., An Interior Point Method in Dantzig-Wolfe Decomposition, Computers & Oper. Res., 1999, vol. 26, no. 12, pp. 1195–1216.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Eremin, I.I., Methods of Fejer’s Approximations in Convex Programming, Math. Notes, 1968, vol. 3, no. 2, pp. 139–149.MathSciNetGoogle Scholar
  16. 16.
    Berdnikova, E.A., Parallel Algorithm for Solving Linear Programming Problem on the Basis of Linear Manifold Projecting Operator, Trudy Vseross. nauchn. konf. “Vysokoproizvoditel’nye vychisleniya i ikh prilozheniya” (Proc. All-Russian Sci. Conf. “High-Performance Computing and Applications”), Moscow: Mos. Gos. Univ., 2000, pp. 71–72.Google Scholar
  17. 17.
    Berdnikova, E.A., Eremin, I.I., and Popov, L.D., Distributed Fejer Processes for Systems of Linear Inequalities and Problems of Linear Programming, Autom. Remote Control, 2004, no. 2, pp. 168–183.Google Scholar
  18. 18.
    Eremin, I.I., Teoriya lineinoi optimizatsii (Theory of Linear Optimization), Ekaterinburg: Ross. Akad. Nauk, 1999.Google Scholar
  19. 19.
    Sokolinskii, L.B., Hierarchial Parallelism: A New Programming Paradigm, Informatsionnyi byulleten’ Assotsiatsii matematicheskogo programmirovaniya (Bulletin of Mathematical Programming Association), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2007, no. 11, pp. 76–77.Google Scholar
  20. 20.
    Dongarra, J.J., Otto, S.W., Snir, M., and Walker, D., A Message Passing Standard for MPP and Workstations, Commun. ACM, 1996, vol. 39, no. 7, pp. 84–90.CrossRefGoogle Scholar
  21. 21.
    Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., and Snir, M., MPI-The Complete Reference, vol. 2: The MPI Extensions, Boston: MIT Press, 1998.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • I. M. Sokolinskaya
    • 1
  • L. B. Sokolinskii
    • 1
  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations