Advertisement

Automation and Remote Control

, Volume 70, Issue 9, pp 1499–1513 | Cite as

Constructing Pontryagin extremals for the optimal control problem of asteroid fly-by

  • I. S. Grigoriev
  • M. P. Zapletin
Topical Issue

Abstract

We consider the problem of constructing Pontryagin extremals for the optimal control task of asteroid fly-by. This problem is a part of a large optimization problem posed on the Third Global Trajectory Optimization Competition. Information about the competition and problem details can be found at http://www2.polito.it/eventi/gtoc3.

PACS numbers

02.60.Pn 45.80.+r 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grigoriev, I.S. and Grigoriev, K.G., Conditions of the Maximum Principle in the Problem of Optimal Control over an Aggregate of Dynamic Systems and Their Application to Solution of the Problems of Optimal Control of Spacecraft Motion, Cosmic Research, 2003, vol. 41, no. 3, pp. 285–309.CrossRefGoogle Scholar
  2. 2.
    Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal control), Moscow: Nauka, 1979.zbMATHGoogle Scholar
  3. 3.
    Aleksandrov, V.V., Bakhvalov, N.S., Grigoriev, K.G., et al., Praktikum po chislennym metodam v zadachakh optimal’nogo upravleniya (A Practical Course on Numerical Methods in Optimal Control Problems), Moscow: Mosk. Gos. Univ., 1988.Google Scholar
  4. 4.
    Grigoriev, I.S., Grigoriev, K.G., and Zapletin, M.P., Praktikum po chislennym metodam v zadachakh optimal’nogo upravleniya. Dopolnenie I (A Practical Course on Numerical Methods in Optimal Control Problems. Supplement I), Moscow: Mosk. Gos. Univ., 2007.Google Scholar
  5. 5.
    Grigoriev, I.S., Metodicheskoe posobie po chislennym metodam resheniya kraevykh zadach printsipa maksimuma v zadachakh optimal’nogo upravleniya (A Practical Course in Numerical Methods for Solving Boundary Problems with the Maximum Principle in Optimal Control Problems), Moscow: Mosk. Gos. Univ., 2005.Google Scholar
  6. 6.
    Grigoriev, I.S., Zapletin, M.P., and Zapletina, E.V., First ACT Global Trajectory Optimisation Competition: Results Found at Moscow State University, Acta Astronautica, 2007, vol. 61, no. 9, pp. 758–762.CrossRefGoogle Scholar
  7. 7.
    Grigoriev, I.S. and Zapletin, M.P., About one Problem of Trajectory Optimization, Cosmic Research, 2008, vol. 46, no. 3, pp. 233–237.CrossRefGoogle Scholar
  8. 8.
    Grigoriev, I.S. and Zapletin, M.P., On a Problem of Trajectory Optimization for a Spacecraft Visiting a Group of Asteroids, Cosmic Research, 2009, vol. 47, no. 4.Google Scholar
  9. 9.
    Hairer, E., Wanner, G., and Norsett, S.P., Solving Ordinary Differential Equations, New York: Springer-Verlag, 1987.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • I. S. Grigoriev
    • 1
  • M. P. Zapletin
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations