Advertisement

Automation and Remote Control

, Volume 69, Issue 11, pp 1932–1945 | Cite as

Petersen’s lemma on matrix uncertainty and its generalizations

  • M. V. Khlebnikov
  • P. S. Shcherbakov
Adaptive and Robust Systems

Abstract

Various generalizations and refinements are proposed for a well-known result on robust matrix sign-definiteness, which is extensively exploited in quadratic stability, design of robustly quadratically stabilizing controllers, robust LQR-problem, etc. The main emphasis is put on formulating the results in terms of linear matrix inequalities.

PACS number

02.10.Ud 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petersen, I., A Stabilization Algorithm for a Class of Uncertain Systems, Syst. Control Lett., 1987, vol. 8, pp. 351–357.zbMATHCrossRefGoogle Scholar
  2. 2.
    Xie, L., Output Feedback H Control of Systems with Parameter Uncertainty, Int. J. Control, 1996, vol. 63, pp. 741–750.zbMATHCrossRefGoogle Scholar
  3. 3.
    Khargonekar, P.P., Petersen, I.R., and Zhou, K., Robust Stabilization of Uncertain Linear Systems: Quadratic Stabilizability and H Control Theory, IEEE Trans. Automat. Control, 1990, vol. 35, no. 3, pp. 356–361.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mao, W.-J. and Chu, J., Quadratic Stability and Stabilization of Dynamic Interval Systems, IEEE Trans. Automat. Control, 2003, vol. 48, no. 6, pp. 1007–1012.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Mao, W.-J. and Chu, J., Correction to “Quadratic Stability and Stabilization of Dynamic Interval Systems,” IEEE Trans. Automat. Control, 2006, vol. 51, no. 8, pp. 1404–1405.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Alamo, T., Tempo, R., Ramirez, D.R., and Camacho, E.F., A New Vertex Result for Robustness Problems with Interval Matrix Uncertainty, in Proc. Eur. Control Conf., Kos, Greece, 2007, paper ThC07.3.Google Scholar
  7. 7.
    Polyak, B.T., Shcherbakov, P.S., and Topunov, M.V., Invariant Ellipsoids Approach to Robust Rejection of Persistent Disturbances, in Proc. 17th World Congr. IFAC, Seoul, 2008, pp. 3976–3981.Google Scholar
  8. 8.
    Polyak, B.T., Topunov, M.V., and Shcherbakov, P.S., Robust Rejection of Exogenous Disturbances via Invariant Ellipsoid Technique, in Proc. XIV Int. Workshop on Dynamics and Control, Zvenigorod, 2007, p. 59.Google Scholar
  9. 9.
    Topunov, M.V. and Shcherbakov, P.S., Ramifications of Petersen’s Lemma on Uncertain Matrices, in Proc. XIV Int. Workshop on Dynamics and Control, Zvenigorod, 2007, p. 66.Google Scholar
  10. 10.
    Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.Google Scholar
  11. 11.
    Polyak, B.T. and Shcherbakov, P.S., The D-decomposition Technique for Linear Matrix Inequalities, Avtom. Telemekh., 2006, no. 11, pp. 159–174.Google Scholar
  12. 12.
    Brickman, L., On the Field of Values of a Matrix, Proc. Am. Math. Soc., 1961, no. 12, pp. 61–66.Google Scholar
  13. 13.
    Rohn J., Positive Definiteness and Stability of Interval Matrices, SIAM J. Matrix Anal. Appl., 1994, vol. 15, no. 1, pp. 175–184.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • M. V. Khlebnikov
    • 1
  • P. S. Shcherbakov
    • 1
  1. 1.Trapesnikov Institute of Control ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations