Automation and Remote Control

, Volume 67, Issue 7, pp 1100–1107 | Cite as

Classification of Boolean functions by the invariants of their matrix representation

  • A. B. Lapshin
Discrete Systems


A variant of matrix representation for Boolean functions is designed such that these functions can be classified by matrix invariants. By way of example, the Deutsch problem is solved to illustrate the advantages of this classification.

PACS number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooke, D.J. and Bez, H.E., Computer Mathematics, New York: Cambridge Univ. Press, 1984. Translated under the title Komp’yuternaya matematika, Moscow: Nauka, 1990.Google Scholar
  2. 2.
    Zakrevskii, A.D. and Toropov, N.R., Polinomial’naya realizatsiya chastichnykh bulevykh funktsii i sistem (Polynomial Realization of Partial Boolean Functions and Systems), Moscow: Editorial URSS, 2003.Google Scholar
  3. 3.
    Peterson, J.L., Petri Net Theory and Modeling of Systems, New York: Prentice-Hall, 1981. Translated under the title Teoriya setei Petri i modelirovanie sistem, Moscow: Mir, 1984.Google Scholar
  4. 4.
    Calingaert, P., Switch Function Canonical Forms Based on Commutative and Associative Binary Operations, Commun. Electron., 1961, vol. 80, no. 52, pp. 118–121.Google Scholar
  5. 5.
    Fin’ko, O.A., Realization of Large-Dimensional Systems of Boolean Functions by Modular Arithmetical Methods, Avtom. Telemekh., 2004, no. 6, pp. 37–60.Google Scholar
  6. 6.
    Shmerko, V.P., Malyugin’s Theorems: A New Interpretation in Logic Control, VLSI, and Structural Data for New Technologies, Avtom. Telemekh., 2004, no. 6, pp. 61–83.Google Scholar
  7. 7.
    Zakrevskii, A.D., Algorithms for Designing Polynomials Realizing Weakly-Defined Boolean Functions and Systems, Avtom. Telemekh., 2004, no. 6, pp. 158–176.Google Scholar
  8. 8.
    Malyugin, V.D., Parallel’nye logicheskie vychisleniya posredstvom arifmeticheskikh polinomov (Parallel Logical Computation through Arithmetical Polynomials), Moscow: Nauka, 1997.Google Scholar
  9. 9.
    Valiev, K.A. and Kokin, A.A., Kvantovye komp’yutery: nadezhdy i real’nost’ (Quantum Computers: Hope and Reality), Moscow: Regulyarnaya i Khaoticheskaya Dinamika, 2002.Google Scholar
  10. 10.
    Bouwmeester, D., Ekert, A.K., and Zeilinger, A., The Physics of Quantum Information, Berlin: Springer, 2000. Translated under the title Fizika kvantovoi informatsii, Moscow: Postmarket, 2002.Google Scholar
  11. 11.
    Deutsch, D., Quantum Theory, the Church—Turing Principle and the Universal Quantum Computer, Proc. Roy. Soc. London, 1985, vol. A400, no. 1818, pp. 97–117.MathSciNetGoogle Scholar
  12. 12.
    Deutsch, D. and Jozsa, R., Rapid Solution of Problems by Quantum Computation, Proc. Roy. Soc. London, 1992, vol. A439, no. 1907, pp. 553–558.MathSciNetGoogle Scholar
  13. 13.
    Dmitriev, A.S. and Panas, A.I., Dinamicheskii khaos: novye nositeli informatsii dlya sistem svyazi (Dynamic Chaos: New Information Carriers for Communication Systems), Moscow: Fizmatlit, 2002.Google Scholar
  14. 14.
    Golovina, L.I., Lineinaya algebra i nekotorye ee prilozheniya (Linear Algebra and Its Application), Moscow: Nauka, 1985.Google Scholar
  15. 15.
    Dubrovin, B.A., Novikov, S.P., and Fomenko, A.T., Sovremennaya geometriya: metody i prilozhemiya (Modern Geometry: Methods and Applications), Moscow: Nauka, 1986.Google Scholar
  16. 16.
    Sing, D.L., Klassicheskaya dinamika (Classical Dynamics), Moscow: Fizmatlit, 1963.Google Scholar
  17. 17.
    Gibson, W.M. and Pollard, B.R., Symmetry Principles in Elementary Particle Physics, New York: Cambridge Univ. Press, 1976. Translated under the title Printsipy simmetrii v fizike elementarnykh chastits, Moscow: Atomizdat, 1979.Google Scholar
  18. 18.
    Berezin, A.V., Kurochkin, Yu.A., and Tolmachev, E.A., Kvaterniony v relyativistskoi fizike (Quarternions in Relativistic Physics), Minsk: Nauka i Tekhnika, 1989.Google Scholar
  19. 19.
    Bogolyubov, N.N. and Shirkov, D.V., Kvantovye polya (Quantum Fields), Moscow: Nauka, 1993.Google Scholar
  20. 20.
    Lyakhovskii, V.D. and Bolokhov, A.A., Gruppy simmetrii i elementarnye chastitsy (Symmetry Groups and Elementary Particles), Moscow: Editorial URSS, 2002.Google Scholar
  21. 21.
    Aminov, L.K., Teoriya simmetrii (Theory of Symmetry), Moscow: Inst. Komp. Issl., 2002.Google Scholar
  22. 22.
    Stratonovich, R.L., Teoriya informatsii (Information Theory), Moscow: Sovetskoe Radio, 1975.Google Scholar
  23. 23.
    Temnikov, F.E., Afonin, V.A., and Dmitriev, V.I., Teoreticheskie osnovy informatsionnoi tekhniki (Theoretical Principles of Information Technology), Moscow: Energiya, 1979.Google Scholar
  24. 24.
    Kolpakov, A.A. and Latypov, R.Kh., Approximate Algorithms for Minimization of Binary Decision Diagrams Based on Linear Transformations of Variables, Avtom. Telemekh., 2004, no. 6, pp. 112–128.Google Scholar
  25. 25.
    Kuz’min, V.B. and Travkin, S.I., Theory of Fuzzy Sets in Control and Principles of Fuzzy Processors, Avtom. Telemekh., 1992, no. 11, pp. 3–36.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • A. B. Lapshin
    • 1
  1. 1.Kostroma State University of TechnologyKostromaRussia

Personalised recommendations