Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 584–590 | Cite as

Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability

  • Q. Xu
  • M. Si
  • Z. Zhang
  • Z. Li
  • L. JiangEmail author
  • H. HuangEmail author
Article
  • 24 Downloads

Abstract

Improving the thermostability of the luciferase from firefly (Photinus pyralis) needs to be solved to broaden its industrial applications. In this paper, molecular dynamic (MD) simulations were used to identify 4 amino acid substitutions (P183V, E325K, Q338V, and E354K) which might have a significant influence on the thermostability of luciferase. Root-mean-square deviation values were calculated to further evaluate the effect of these mutations on thermostability of the enzyme and demonstrated that the thermostability of the corresponding protein variants was in the order E354K > E325K > WT > P183V > Q338V. Following the MD simulation, the enzyme variants were expressed in a recombinant host, and the results showed that the t1/2, T50, and Tm of mutant E354K were increased 2.32-fold, and 4.5 and 3.3°C more compared with the wild type, respectively. MD simulations, as well as circular dichroism and fluorescence spectroscopy were further applied to elucidate the conformational differences between the wild-type and E354K luciferases. The results indicated that a possible explanation for the improved thermostability of E354K enzyme lies in the formation of a salt bridge between Lys354 and Glu311 and alteration of protein conformation.

Keywords:

luciferase molecular dynamic simulation site-directed mutagenesis thermostability 

REFERENCES

  1. 1.
    Fraga, H., Photochem. Photobiol. Sci., 2008, vol. 7, no. 2, pp. 146–158.CrossRefGoogle Scholar
  2. 2.
    Niwa, K., Ichino, Y., Kumata, S., Nakajima, Y., Hiraishi, Y., Kato, D., et al., Photochem Photobiol., 2010, vol. 86, no. 5, pp. 1046–1049.CrossRefGoogle Scholar
  3. 3.
    Yamakawa, Y., Ueda, H., Kitayama, A., and Nagamune, T., J. Biosci. Bioeng., 2002, vol. 93, no. 6, pp. 537–642.CrossRefGoogle Scholar
  4. 4.
    Kim, H.K., Cho, E.J., Jo, S., M., Sung, B.R., Lee, S., and Yun, S., Curr. Genet., 2012, vol. 58, no. 3, pp. 179–189.CrossRefGoogle Scholar
  5. 5.
    Brogan, J., Li, F., Li, W., He, Z., Huang, Q., and Li, C.Y., Radiat. Res., 2012, vol. 177, no. 4, pp. 508–513.CrossRefGoogle Scholar
  6. 6.
    Mollania, N., Khajeh, K., Ranjbar, B., and Hosseinkhani, S., Enzyme Microb. Tech., 2011, vol. 49, no. 5, pp. 446–452.CrossRefGoogle Scholar
  7. 7.
    Madan, B. and Mishra, P., Biochem. Eng. J., 2014, vol. 91, no. 3, pp. 276–282.CrossRefGoogle Scholar
  8. 8.
    Liu, J., Yu, H., and Shen, Z., J. Mol. Graph. Model., 2009, vol. 27, no. 4, pp. 529–535.CrossRefGoogle Scholar
  9. 9.
    Pikkemaat, M.G., Linssen, A.B., Berendsen, H.J., and Janssen, D.B., Protein Eng., 2002, vol. 15, no. 3, pp: 185–192.CrossRefGoogle Scholar
  10. 10.
    Bayram Akcapinar, G., Venturini, A., Martelli, P.L., Casadio, R., and Sezerman, U.O., Protein. Eng. Des. Sel., 2015, vol. 28, no. 5, pp. 127–135.CrossRefGoogle Scholar
  11. 11.
    Tian, J., Wang, P., Gao, S., Chu, X., Wu, N., and Fan, Y., FEBS J., 2010, vol. 277, no. 23, pp. 4901–4908.CrossRefGoogle Scholar
  12. 12.
    Zhu, F., Zhuang, Y., Wu, B., Li, J., and He, B., Appl. Biochem. Biotech., 2015, vol. 178, no. 4, pp. 725–738.CrossRefGoogle Scholar
  13. 13.
    Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J., J. Comput. Chem., 2005, vol., 26, no. 16, pp. 1701–1718.CrossRefGoogle Scholar
  14. 14.
    Franks, N.P., Jenkins, A., Conti, E., Lieb, W.R., and Brick, P., Biophys. J, 1998, vol. 75, no. 5, pp. 2205–2211.CrossRefGoogle Scholar
  15. 15.
    Essmann, U., Perera, L., and Berkowitz, M.L., J. Chem. Phys., 1995, vol. 103, no. 19, pp. 8577–8593.CrossRefGoogle Scholar
  16. 16.
    Koksharov, M.I. and Ugarova, N.N., Protein. Eng. Des. Sel., 2011, vol. 24, no. 11, pp. 835–844.CrossRefGoogle Scholar
  17. 17.
    Yu, H., Zhao, Y., Guo, C., Gan, Y., and Huang, H., Biochim. Biophys. Acta., 2015, vol. 1854, no. 1, pp. 65–72.CrossRefGoogle Scholar
  18. 18.
    Jia, R., Hu, Y., Liu, L., Jiang, L., Zou, B., and Huang, H., ACS. Catal., 2013, vol. 3, no. 9, pp. 1976–1983.CrossRefGoogle Scholar
  19. 19.
    Modestova, Y., Koksharov, M.I., and Ugarova, N.N., Biochim. Biophys. Acta, 2014, vol. 1844, no. 9, pp. 1463–1471.CrossRefGoogle Scholar
  20. 20.
    Yang, J.T., Wu, C.S.C., and Martinez, H.M., Method. Enzymol., 1986, vol. 130, no. 4, pp. 208–269.CrossRefGoogle Scholar
  21. 21.
    Amini-Bayat, Z., Hosseinkhani, S., Jafari, R. and Khajeh, K., Biochim. Biophys. Acta, 2012, vol. 1824, no. 2, pp. 350–358.CrossRefGoogle Scholar
  22. 22.
    Duan, X., Cheng, S., Ai, Y., and Wu, J., PLoS One, 2016, vol. 11, no. 2. e0149208.CrossRefGoogle Scholar
  23. 23.
    Lee, C.F., Makhatadze, G.I., and Wong, K.B., Biochemistry, 2005, vol. 44, no. 51, pp. 16817–16825.CrossRefGoogle Scholar
  24. 24.
    Karimzadeh, S., Moradi, M., and Hosseinkhani, S., Int. J. Biol. Macromol., 2012, vol. 51, no. 5, pp. 837–844.CrossRefGoogle Scholar
  25. 25.
    Yang, X., Jiang, L., Jia, Y., Hu, Y., Xu Q., Xu X., and Huang, H., PLoS One, 2016, vol. 11, no. 3. e0152275.CrossRefGoogle Scholar
  26. 26.
    Chen, J., Yu, H., Liu, C., Liu, J., and Shen, Z., J. Biotechnol., 2012, vol. 164, no. 2, pp. 354–362.CrossRefGoogle Scholar
  27. 27.
    Roseata, Z., Khajeh, K., Monajjemi, M., and Ghaemi, N., J. Microbiol. Biotech., 2013, vol. 23, no. 1, pp. 7–14.CrossRefGoogle Scholar
  28. 28.
    Chen, Z., Fu, Y., Xu, W., and Li, M., Math. Probl. Eng., 2013, vol. 2013, pp. 1–12.Google Scholar
  29. 29.
    Alipour, B.S., Hosseinkhani, S., Ardestanib, S.K., and Moradia, A., Photochem. Photobiol. Sci., 2009, vol. 8, no. 6, pp. 847–855.CrossRefGoogle Scholar
  30. 30.
    Tafreshi, N.Kh., Sadeqhizadeh, M., Emamzadeh, R., Ranjbar, B., Naderi-Manesh, H., and Hosseinkhani, S., Biochem. J., 2008, vol. 412, no. 1, pp. 27–33.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.School of Pharmaceutical Sciences, Nanjing Tech UniversityNanjingChina
  2. 2.College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech UniversityNanjingChina
  3. 3.College of Food Sciences and Light Industry, Nanjing Tech UniversityNanjingChina

Personalised recommendations