Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 658–664 | Cite as

Flocculating Protein Flo1p from Saccharomyces cerevisiae W303-1A

  • F. Z. WangEmail author
  • L. Zhang
Article
  • 13 Downloads

Abstract

In Saccharomyces cerevisiae, flocculation is mainly regulated by the expression of genes belonging to the FLO family. In this study, the flocculating protein Flo1p, which is encoded by FLO1 gene was isolated and purified from S. cerevisiae W303-1A F4. The protein was found to have a molecular weight of about 200 kDa and belongs to Flo1-type. In addition, the recombinant yeasts including S. cerevisiae ZWA46 (Δ196-240), S. cerevisiae ZWA46 (Δ196-209) and S. cerevisiae ZWA46 (Δ210-240), were constructed. The results showed that amino acid residues from 196 to 209 of Flo1p were the active mannose-binding region, while residues 210 to 240 were not. The latter, however, had a certain influence on mannose-binding ability of Flo1p.

Keywords:

flocculating protein Flo1p cell wall protein recombinant flocculating yeast mannose-binding region flocculation ability 

REFERENCES

  1. 1.
    Stratford, M. and Assinder, S., Yeast, 1991, vol. 7, no. 6, pp. 559–574.CrossRefGoogle Scholar
  2. 2.
    Watari, J., Takata, Y., Ogawa, M., Sahara, H., Koshino, S., Onnela, M.L., et al., Yeast, 1994, vol. 10, no. 2, pp. 211–225.CrossRefGoogle Scholar
  3. 3.
    Binad, F., Bony, M., Blondin, B., Dequin, S., and Barre, P., Yeast, 1995, vol. 11, no. 9, pp. 809–822.CrossRefGoogle Scholar
  4. 4.
    Bauer, F. F., Govender, P., and Bester, M. C., Appl. Microbiol. Biotechnol., 2010, vol. 88, no. 1, pp. 31–39.CrossRefGoogle Scholar
  5. 5.
    Bony, M., Thines-Sempoux, D., Barre, P., and Blondin, B. J., Bacteriol., 1997, vol. 179, no. 24, pp. 4929–4936.CrossRefGoogle Scholar
  6. 6.
    Govender, N.P., Domingo, J.L., Bester, M.C., Pretorius, I.S., and Bauer, F.F., Appl. Environ. Microbiol., 2008, vol. 74, no. 19, pp. 6041–6052.CrossRefGoogle Scholar
  7. 7.
    Goossens, K.V.Y., De, G.H., and Willaert, R.G., Protein Expr. Purif., 2013, vol. 88, no. 1, pp. 114–119.CrossRefGoogle Scholar
  8. 8.
    Kobayashi, O., Hayashi, N., Kuroki, R., and Sone, H., J. Bacteriol., 1998, vol. 180, no. 24, pp. 6503–6510.Google Scholar
  9. 9.
    Javadekar, V.S., Silvaraman, H., Sainkar, S.R., and Khan, M.I., Yeast, 2000, vol. 16, no. 2, pp. 99–110.CrossRefGoogle Scholar
  10. 10.
    Soares, E.V., J. Appl. Microbiol., 2011, vol. 110, no. 1, pp. 1–18.CrossRefGoogle Scholar
  11. 11.
    Goossens, K. and Willaert, R., Biotechnol. Lett., 2010, vol. 32, no. 11, pp. 1571–1585.CrossRefGoogle Scholar
  12. 12.
    Morades-Ferrira, P., Fernandes, P.A., and Costa, M.J., Colloids Surf. B: Biointerfaces, 1994, vol. 2, nos. 1–3, pp. 159–164.CrossRefGoogle Scholar
  13. 13.
    Straver, M.H., Smit, G., and Kijne, J.W., Appl. Environ. Microbiol., 1994, vol. 60, no. 8, pp. 2754–2758.Google Scholar
  14. 14.
    Sato, N., Matsumoto, T., Ueda, M., Tanaka, A., Fukuda, H., and Kondo, A., Appl. Microbiol. Biotechnol., 2002, vol. 60, no. 4, pp. 469–474.CrossRefGoogle Scholar
  15. 15.
    Wang, F.Z., Xie T., and Hui M., Appl. Biochem. Microbiol., 2011, vol. 47, no. 5, pp.527–531.CrossRefGoogle Scholar
  16. 16.
    Skinner, H.B., James Jr, J.G.A., Whitters, E.A., Jr G.M.H., and Bankaitis, V.A., EMBO J., 1993, vol. 12, no. 12, pp.4775–4784.CrossRefGoogle Scholar
  17. 17.
    Watanabe, K., Rude, M.A., Walsh, C.T., Khosla, C., Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 17, pp 9774–9778.CrossRefGoogle Scholar
  18. 18.
    Wang, J.Z., Fan, M., Protein Technology Handbook, Beijing: Sci. Press, 2004.Google Scholar
  19. 19.
    Asryants, R.A., Duszenkova, I.V.,and Nagradova, N.K., Anal. Biochem., 1985, vol. 151, no. 2, pp. 571–574.CrossRefGoogle Scholar
  20. 20.
    Duan, E., Wang, D., Luo, R., Luo, J., Gao, L., Chen, H., Fang, L., and Xiao, S., Virology, 2014, vols. 468–470C, pp. 1–9.Google Scholar
  21. 21.
    Teunissen, A.W.R.H., Holub, E., Hucht J.V.D., Berg, J.A.V.D., and Steensma, H.Y., Yeast, 1993, no. 4, vol. 9, pp. 423–427.CrossRefGoogle Scholar
  22. 22.
    Dranginis, A. M., Rauceo, J. M., Coronado, J. E., and Lipke, P.N., Microbiol. Mol. Biol. Rev., 2007, vol. 71, no. 2, pp. 282–294.CrossRefGoogle Scholar
  23. 23.
    Lehle, L. and Bause, E., Biochem. Biophys. Acta, 1984, vol. 799, no. 3, pp. 246–251.CrossRefGoogle Scholar
  24. 24.
    Jentoft, N., Trends Biochem. Sci., 1990, vol. 15, no. 8, pp. 291–294.CrossRefGoogle Scholar
  25. 25.
    Goossens, K.V.Y., Ielasi, F.S., Nookaew, I., Stals, I., Alonso-Sarduy, L., Daenen, L., et al., mBio, 2015, vol. 6, no. 2, pp. 1–16.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.National Engineering Laboratory of Wheat and Corn Further Processing, Henan University of TechnologyZhengzhouP.R. China
  2. 2.School of Bioengineering, Henan University of TechnologyZhengzhouP.R. China

Personalised recommendations