Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 624–630 | Cite as

Encapsulation of Bacillus subtilis Cells for Production of Whey Protein Hydrolysates

  • Y. Alvarado
  • C. MuroEmail author
  • I. A. Rivero
  • G. E. Pina
  • J. Illescas
  • M. C. Díaz


Bacillus subtilis biomass was encapsulated in 2 biopolymeric membranes to evaluate the enzyme hydrolysis of whey protein and the functional characteristics of the obtained products. The encapsulates of membranes contained composite gel of sodium alginate and chitosan supplied with polyethylene glycol or glutaraldehyde for improving the mechanical properties of the composite. Morphology, porosity, water retention and biomass proliferation of membranes were analyzed. Protease activity from encapsulated B. subtilis was evaluated by the kinetic of protein hydrolysis for 8 h. Quality of hydrolysates was analyzed according to their functional properties. Conventional hydrolysis by commercial neutrase and free biomass of B. subtilis were used as control. Alginate-chitosan-polyethylene glycol composite gave the best results of bacterial encapsulation. Functional properties of the whey protein hydrolysates were comparable with those for products obtained after the action of neutrase and free microbial biomass. In addition, the enzyme activity remained after 5 cycles of hydrolysis. Thus, encapsulating microbial biomass could be an economic alternative of biocatalytic process to produce functional whey products.


Bacillus subtilis encapsulation biopolymers whey protein protease hydrolysis functional properties 


  1. 1.
    Muro-Urista, C., Álvarez-Fernández, R., Riera-Rodríguez, F., Arana-Cuenca, A., and Téllez-Jurado, A., Food Sci. Technol. Int., 2011, vol. 17, no. 4, pp. 293–317.CrossRefGoogle Scholar
  2. 2.
    Abd El-Salam, M.H. and El-Shibiny, S., Critic. Rev. Food Sci. Nutr., 2017, vol. 57, pp. 1119–1132.CrossRefGoogle Scholar
  3. 3.
    Mohamad, N.R., Marzuki, N.H.C., Buang, N.A., Huyop, F., and Wahab, R.A., Biotechnol. Biotechnol. Equip., 2015, vol. 29, no. 2, pp. 205–220.CrossRefGoogle Scholar
  4. 4.
    Singh, P., Medronho, B., Alves, L., da Silva, G.J., and Lindman, B., Carbohydr. Polym., 2017, vol. 175, no. 6, pp. 87–95.CrossRefGoogle Scholar
  5. 5.
    El-Zahar, K., Chobert, J.M., Sitohy, M., Dalgalarrondo, M., and Haertlé, T., Mol. Nutr. Food Res., 2003, vol. 47, no. 3, pp. 199–206.Google Scholar
  6. 6.
    Pant, G., Prakash, A., Pavani, J.V.P., Bera, S., Deviram, G.V.N.S., et al., J. Taibah. Univ. Sci., 2015, vol. 9, no. 1, pp. 50–55.CrossRefGoogle Scholar
  7. 7.
    Baysal, K., Aroguz, A.Z., Adiguzel, Z. and Baysal, B.M., Int. J. Biol. Macromol., 2013, vol. 59, pp. 342–348.CrossRefGoogle Scholar
  8. 8.
    Bapat, P., Kumar, S., Wangikar, P., Venkatesh, K.V., J. Microbiol. Methods, 2006, vol. 65, pp. 107–116.CrossRefGoogle Scholar
  9. 9.
    Tovar-Jiménez, X., Arana-Cuenca, A., Téllez-Jurado, A., Abreu-Corona, A., and Muro-Urista, C.R., J. Mex. Chem. Soc., 2012, vol. 56, no. 4, pp. 369–377.Google Scholar
  10. 10.
    Tovar-Jiménez, X., Muro-Urista, C.R., Tellez-Jurado, A., Mercado-Flores, Y., Abreu-Corona1, A. and Arana-Cuenca, A., Rev. Mex. Ing. Quím., 2017, vol. 16, no. 1, pp.11–18.Google Scholar
  11. 11.
    Ortega, L., Romero, A., Muro, C., and Riera, F., Int. J. Polym. Sci., 2015, vol. 2015, pp. 1–10.CrossRefGoogle Scholar
  12. 12.
    Simó, G., Fernández-Fernández, E., Vila-Crespo, J., Ruipérez, V., and Rodríguez-Nogales, J.M., Carbohydr. Polym., 2017, vol. 170, pp. 1–14.CrossRefGoogle Scholar
  13. 13.
    Adinarayana, K., Jyothi, B., and Ellaiah, P., AAPS PharmSciTech, 2005, vol. 6, no. 3, pp. 391–397.CrossRefGoogle Scholar
  14. 14.
    Custódio, M.F., Goulart, A.J., Marques, D.P., Giordano, R.C., Giordano, L.C., and Monti, R.A., Alim. Nutr. Araraquara, 2009, vol.16, no. 2, pp. 105–109.Google Scholar
  15. 15.
    Kim, S.B., Seo, I.S., Khan, M.A., Ki, K.S., Lee, W.S., Lee, H.J., and Kim, H.S., J. Dairy Sci., 2007, vol. 90, no. 9, pp. 4033–4042.CrossRefGoogle Scholar
  16. 16.
    Le Maux, S., Nongonierma, A.B., Barre, C., and FitzGerald, R.J., Food Chem., 2016, vol. 199, pp. 246–251.CrossRefGoogle Scholar
  17. 17.
    Lacou, L., Léonil, J., and Gagnaire, V., Food Hydrocoll., 2016, vol. 57, pp. 187–199.CrossRefGoogle Scholar
  18. 18.
    Ghribi, A.M., Gafsi, I.M., Sila, A., Blecker, C., Danthine, S., Attia, H., and Besbes, S., Food Chem., 2015, vol. 187, pp. 322–330.CrossRefGoogle Scholar
  19. 19.
    Pacheco-Aguilar, R., Mazorra-Manzano, M.A., and Ramírez-Suárez, J.C., Food Chem., 2008, vol. 109, no. 4, pp. 782–789.CrossRefGoogle Scholar
  20. 20.
    De Castro, R.J., Domingues, M.A., Ohara, A., Okuro, P.K., dos Santos, J., Brexó, R., and Sato, R., Food Structure, 2017, vol.14, pp. 17–29.CrossRefGoogle Scholar
  21. 21.
    Corzo-Martínez, M., Moreno, F. J., Villamiel, M., Patino, J. M. R., and Sánchez, C.C., Food Hydrocoll., 2017, vol. 66, pp. 16–26.CrossRefGoogle Scholar
  22. 22.
    Tamm, F. and Drusch, S., Food Hydrocoll., 2017, vol. 63, pp. 8–18.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Y. Alvarado
    • 1
  • C. Muro
    • 1
    Email author
  • I. A. Rivero
    • 2
  • G. E. Pina
    • 3
  • J. Illescas
    • 1
  • M. C. Díaz
    • 1
  1. 1.Department of Chemical Engineering and Research, Technological Institute of TolucaTolucaMéxico
  2. 2.Technological Institute of TijuanaTijuanaMéxico
  3. 3.Technological Institute of ParralParral, ChihuahuaMéxico

Personalised recommendations