Isolation and Characterization of Water-Soluble Chromoproteins from Arthrospira platensis Cyanobacteria: C-Phycocyanin, Allophycocyanin, and Carotenoid- and Chlorophyll-Binding Proteins
- 39 Downloads
Abstract—
A method using chromatography on DEAE-Toyopearl 650M was developed for the simultaneous extraction of water-soluble chromoproteins from Arthrospira platensis cyanobacteria cells. These chromoproteins were C-phycocyanin, allophycocyanin, and carotenoid- and chlorophyll-binding proteins. The purity of the isolated C-phycocyanin was 4.42 (A620/A280). The allophycocyanin purity was 3.40 (A652/A280). The phycocyanin purity was confirmed by the presence of only two bands obtained during SDS-PAGE: α-subunit (17 kDa) and β-subunit (18 kDa). The isolated carotenoid- and chlorophyll-binding proteins were analyzed by high-performance exclusion chromatography on TSK-GEL 2000SW (XL) with detection at three wavelengths (280, 480, and 678 nm). The spectral, chromatographic, and electrophoretic analyses of chromoproteins, as well as pigment analysis, made it possible to conclude that the carotenoid—chlorophyll a binding protein was a xanthophyll-chlorophyll a protein complex, and the chlorophyll a binding protein was a chlorophyll a protein complex. The molecular weight of the proteins was determined by high-performance exclusion chromatography and SDS-PAGE to be 57 and 16 kDa, respectively. The photoprotective properties of these proteins and their possible functioning as part of evolutionary precursors of photosynthetic systems are discussed.
Keywords:
spirulina Arthrospira platensis allophycocyanin C-phycocyanin water-soluble carotenoid–chlorophyll a binding protein water-soluble chlorophyll a binding protein evolution of photosynthesisNotes
REFERENCES
- 1.Vonshak, A., in Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology, Vonshak, A., Ed., London: Taylor and Francis, 1997, pp. 43–66.Google Scholar
- 2.Chernova, N.I., Korobkova, T.P., and Kiseleva, S.V., Biologiya, 2006, no. 13. ID=200601304.Google Scholar
- 3.Ciferri, O. and Tiboni, O., Annu. Rev. Microbiol., 1985, vol. 39, pp. 503–526.CrossRefGoogle Scholar
- 4.Richmond, A., in Micro-algal Biotechnology, Borowitzka, M.A. and Borowitzka, L.J., Eds., Cambridge: Cambridge U.P, 1988, pp. 85–121.Google Scholar
- 5.Jiménez, C., Cossio, B.R., and Niell, F.X., Aquaculture, 2003, vol. 221, nos. 1–4, pp. 331–345.CrossRefGoogle Scholar
- 6.Tietze, H., Water Medicine, Bermagui, Australia: Harald Tietze Publishing PL, 1997, pp. 65–66.Google Scholar
- 7.Lehto, K.M., Lehto, H.J., and Kanervo, E.A., Res. Microbiol., 2006, vol. 157, no. 1, pp. 69–76.CrossRefGoogle Scholar
- 8.Henrikson, R., Earth Food Spirulina, California: Ronore Enterprises. Inc. Kenwood, 1994.Google Scholar
- 9.Liu, Q., Huang, Y., Zhang, R., Cai, T., and Cai, Y., Evid. Based Complement. Alternat. Med., 2016, vol. 2016, p. 7803846.Google Scholar
- 10.Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y., and Li, B., J. Cancer, 2017, vol. 8, no. 17, pp. 3416–3429.CrossRefGoogle Scholar
- 11.Liao, G., Gao, B., Gao, Y., Yang, X., Cheng, X., and Qu, Y., Sci. Rep., 2016, vol. 6, p. 34564.CrossRefGoogle Scholar
- 12.Li, C., Yu, Y., Li, W., Liu, B., Jiao, X., Song, X., Lv, C., and Qin, S., Sci. Rep., 2017, vol. 7, p. 34564.Google Scholar
- 13.Stadnichuk, I.N. and Tropin, I.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 1–10.CrossRefGoogle Scholar
- 14.Eriksen, N.T., Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 1, pp. 1–14.CrossRefGoogle Scholar
- 15.Patel, A., Pawar, R., Mishra, S., Sonawane, S., and Ghosh, P.K., Indian J. Biochem. Biophys., 2004, vol. 41, no. 5, pp. 254–257.Google Scholar
- 16.Patil, G. and Raghavarao, K.S.M.S., Biochem. Eng. J., 2007, vol. 34, no. 2, pp. 156–164.CrossRefGoogle Scholar
- 17.Beregovaya, N.M., Ekol. Morya, 2010, vol. 80, pp. 12‒16.Google Scholar
- 18.Sukhoverkhov, S.V., Vestn. TGEU, 2005, no. 4, pp. 66‒76.Google Scholar
- 19.Bennett, A. and Bogorad, L., J. Cell Biol., 1973, vol. 58, no. 2, pp. 419–435.CrossRefGoogle Scholar
- 20.Zhang, Yi-M. and Chen, F., Biotechnol. Tech., 1999, vol. 13, no. 9, pp. 601–603.Google Scholar
- 21.Soni, B., Trivedi, U., and Madamwar, D., Bioresour. Technol., 2008, vol. 99, no. 1, pp. 188–194.CrossRefGoogle Scholar
- 22.Song, W., Zhao, C., and Wang, S., Int. J. Biosci. Biochem. Bioinform., 2013, vol. 3, no. 4, pp. 293–297.Google Scholar
- 23.Terekhova, I.V., Chernyad’ev, I.I., and Doman, N.G., Mikrobiologiya, 1986, vol. 55, no. 4, pp. 695‒698.Google Scholar
- 24.Kumar, D., Dhar, D.W., Pabbi, S., Kumar, N., and Walia, S., Ind. J. Plant. Physiol., 2014, vol. 19, no. 2, pp. 184–188.CrossRefGoogle Scholar
- 25.Patil, G., Chethana, S., Sridevi, A.S., and Raghavarao, K.S.M.S., J. Chromatogr. A, 2006, vol. 1127, nos. 1–2, pp. 76–81.CrossRefGoogle Scholar
- 26.Avsiyan, A.L. and Trenkenshu, R.P., Vopr. Sovrem. Al’gol., 2017, no. 1 (13). http://algology.ru/1107.Google Scholar
- 27.Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.CrossRefGoogle Scholar
- 28.Heldt, G.-V, Biokhimiya rastenii (Plant Biochemistry), Moscow: BINOM, 2011.Google Scholar
- 29.Lebedev, V.M., Maksimov, G.V., Maksimov, E.G., Pashchenko, V.Z., Spasskii, A.V., Trukhanov, K.A., and Tsoraev, G.V., Izv. Ross. Akad. Nauk, Ser. Fiz., 2014, vol. 78, no. 7, pp. 842‒845.Google Scholar
- 30.Takahashi, S., Yanai, H., Nakamaru, Y., Uchida, A., Nakayama, K., and Satoh, H., Plant Cell Physiol., 2012, vol. 53, no. 5, pp. 879–891.CrossRefGoogle Scholar
- 31.Bednarczyk, D., Takahashi, S., Satoh, H., and Noy, D., Biochim. Biophys. Acta Bioenergetics, 2015, vol. 1847, no. 3, p. 307–312.CrossRefGoogle Scholar
- 32.Rakhimberdieva, M.G., Stadnichuk, I.N., Elan-skaya, I.V., and Karapetyan, N.V., FEBS Lett., 2004, vol. 574, nos. 1–3, pp. 85–88.CrossRefGoogle Scholar
- 33.Kirilovsky, D. and Kerfeld, C.A., Photochem. Photobiol. Sci., 2013, vol. 12, no. 7, pp. 1135–1143.CrossRefGoogle Scholar
- 34.Jiang, J., Zhang, H., Kang, Y., Bina, D., Lo, C.S., and Blankenship, R.E., Biochim. Biophys. Acta, 2012, vol. 1817, no. 7, pp. 983–989.CrossRefGoogle Scholar