Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 631–638 | Cite as

Isolation and Characterization of Water-Soluble Chromoproteins from Arthrospira platensis Cyanobacteria: C-Phycocyanin, Allophycocyanin, and Carotenoid- and Chlorophyll-Binding Proteins

  • T. A. TeleginaEmail author
  • M. V. Biryukov
  • I. V. Terekhova
  • Yu. L. Vechtomova
  • M. S. Kritsky
Article
  • 39 Downloads

Abstract

A method using chromatography on DEAE-Toyopearl 650M was developed for the simultaneous extraction of water-soluble chromoproteins from Arthrospira platensis cyanobacteria cells. These chromoproteins were C-phycocyanin, allophycocyanin, and carotenoid- and chlorophyll-binding proteins. The purity of the isolated C-phycocyanin was 4.42 (A620/A280). The allophycocyanin purity was 3.40 (A652/A280). The phycocyanin purity was confirmed by the presence of only two bands obtained during SDS-PAGE: α-subunit (17 kDa) and β-subunit (18 kDa). The isolated carotenoid- and chlorophyll-binding proteins were analyzed by high-performance exclusion chromatography on TSK-GEL 2000SW (XL) with detection at three wavelengths (280, 480, and 678 nm). The spectral, chromatographic, and electrophoretic analyses of chromoproteins, as well as pigment analysis, made it possible to conclude that the carotenoid—chlorophyll a binding protein was a xanthophyll-chlorophyll a protein complex, and the chlorophyll a binding protein was a chlorophyll a protein complex. The molecular weight of the proteins was determined by high-performance exclusion chromatography and SDS-PAGE to be 57 and 16 kDa, respectively. The photoprotective properties of these proteins and their possible functioning as part of evolutionary precursors of photosynthetic systems are discussed.

Keywords:

spirulina Arthrospira platensis allophycocyanin C-phycocyanin water-soluble carotenoid–chlorophyll a binding protein water-soluble chlorophyll a binding protein evolution of photosynthesis 

Notes

REFERENCES

  1. 1.
    Vonshak, A., in Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology, Vonshak, A., Ed., London: Taylor and Francis, 1997, pp. 43–66.Google Scholar
  2. 2.
    Chernova, N.I., Korobkova, T.P., and Kiseleva, S.V., Biologiya, 2006, no. 13. ID=200601304.Google Scholar
  3. 3.
    Ciferri, O. and Tiboni, O., Annu. Rev. Microbiol., 1985, vol. 39, pp. 503–526.CrossRefGoogle Scholar
  4. 4.
    Richmond, A., in Micro-algal Biotechnology, Borowitzka, M.A. and Borowitzka, L.J., Eds., Cambridge: Cambridge U.P, 1988, pp. 85–121.Google Scholar
  5. 5.
    Jiménez, C., Cossio, B.R., and Niell, F.X., Aquaculture, 2003, vol. 221, nos. 1–4, pp. 331–345.CrossRefGoogle Scholar
  6. 6.
    Tietze, H., Water Medicine, Bermagui, Australia: Harald Tietze Publishing PL, 1997, pp. 65–66.Google Scholar
  7. 7.
    Lehto, K.M., Lehto, H.J., and Kanervo, E.A., Res. Microbiol., 2006, vol. 157, no. 1, pp. 69–76.CrossRefGoogle Scholar
  8. 8.
    Henrikson, R., Earth Food Spirulina, California: Ronore Enterprises. Inc. Kenwood, 1994.Google Scholar
  9. 9.
    Liu, Q., Huang, Y., Zhang, R., Cai, T., and Cai, Y., Evid. Based Complement. Alternat. Med., 2016, vol. 2016, p. 7803846.Google Scholar
  10. 10.
    Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y., and Li, B., J. Cancer, 2017, vol. 8, no. 17, pp. 3416–3429.CrossRefGoogle Scholar
  11. 11.
    Liao, G., Gao, B., Gao, Y., Yang, X., Cheng, X., and Qu, Y., Sci. Rep., 2016, vol. 6, p. 34564.CrossRefGoogle Scholar
  12. 12.
    Li, C., Yu, Y., Li, W., Liu, B., Jiao, X., Song, X., Lv, C., and Qin, S., Sci. Rep., 2017, vol. 7, p. 34564.Google Scholar
  13. 13.
    Stadnichuk, I.N. and Tropin, I.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 1–10.CrossRefGoogle Scholar
  14. 14.
    Eriksen, N.T., Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 1, pp. 1–14.CrossRefGoogle Scholar
  15. 15.
    Patel, A., Pawar, R., Mishra, S., Sonawane, S., and Ghosh, P.K., Indian J. Biochem. Biophys., 2004, vol. 41, no. 5, pp. 254–257.Google Scholar
  16. 16.
    Patil, G. and Raghavarao, K.S.M.S., Biochem. Eng. J., 2007, vol. 34, no. 2, pp. 156–164.CrossRefGoogle Scholar
  17. 17.
    Beregovaya, N.M., Ekol. Morya, 2010, vol. 80, pp. 12‒16.Google Scholar
  18. 18.
    Sukhoverkhov, S.V., Vestn. TGEU, 2005, no. 4, pp. 66‒76.Google Scholar
  19. 19.
    Bennett, A. and Bogorad, L., J. Cell Biol., 1973, vol. 58, no. 2, pp. 419–435.CrossRefGoogle Scholar
  20. 20.
    Zhang, Yi-M. and Chen, F., Biotechnol. Tech., 1999, vol. 13, no. 9, pp. 601–603.Google Scholar
  21. 21.
    Soni, B., Trivedi, U., and Madamwar, D., Bioresour. Technol., 2008, vol. 99, no. 1, pp. 188–194.CrossRefGoogle Scholar
  22. 22.
    Song, W., Zhao, C., and Wang, S., Int. J. Biosci. Biochem. Bioinform., 2013, vol. 3, no. 4, pp. 293–297.Google Scholar
  23. 23.
    Terekhova, I.V., Chernyad’ev, I.I., and Doman, N.G., Mikrobiologiya, 1986, vol. 55, no. 4, pp. 695‒698.Google Scholar
  24. 24.
    Kumar, D., Dhar, D.W., Pabbi, S., Kumar, N., and Walia, S., Ind. J. Plant. Physiol., 2014, vol. 19, no. 2, pp. 184–188.CrossRefGoogle Scholar
  25. 25.
    Patil, G., Chethana, S., Sridevi, A.S., and Raghavarao, K.S.M.S., J. Chromatogr. A, 2006, vol. 1127, nos. 1–2, pp. 76–81.CrossRefGoogle Scholar
  26. 26.
    Avsiyan, A.L. and Trenkenshu, R.P., Vopr. Sovrem. Al’gol., 2017, no. 1 (13). http://algology.ru/1107.Google Scholar
  27. 27.
    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–685.CrossRefGoogle Scholar
  28. 28.
    Heldt, G.-V, Biokhimiya rastenii (Plant Biochemistry), Moscow: BINOM, 2011.Google Scholar
  29. 29.
    Lebedev, V.M., Maksimov, G.V., Maksimov, E.G., Pashchenko, V.Z., Spasskii, A.V., Trukhanov, K.A., and Tsoraev, G.V., Izv. Ross. Akad. Nauk, Ser. Fiz., 2014, vol. 78, no. 7, pp. 842‒845.Google Scholar
  30. 30.
    Takahashi, S., Yanai, H., Nakamaru, Y., Uchida, A., Nakayama, K., and Satoh, H., Plant Cell Physiol., 2012, vol. 53, no. 5, pp. 879–891.CrossRefGoogle Scholar
  31. 31.
    Bednarczyk, D., Takahashi, S., Satoh, H., and Noy, D., Biochim. Biophys. Acta Bioenergetics, 2015, vol. 1847, no. 3, p. 307–312.CrossRefGoogle Scholar
  32. 32.
    Rakhimberdieva, M.G., Stadnichuk, I.N., Elan-skaya, I.V., and Karapetyan, N.V., FEBS Lett., 2004, vol. 574, nos. 1–3, pp. 85–88.CrossRefGoogle Scholar
  33. 33.
    Kirilovsky, D. and Kerfeld, C.A., Photochem. Photobiol. Sci., 2013, vol. 12, no. 7, pp. 1135–1143.CrossRefGoogle Scholar
  34. 34.
    Jiang, J., Zhang, H., Kang, Y., Bina, D., Lo, C.S., and Blankenship, R.E., Biochim. Biophys. Acta, 2012, vol. 1817, no. 7, pp. 983–989.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • T. A. Telegina
    • 1
    Email author
  • M. V. Biryukov
    • 2
  • I. V. Terekhova
    • 1
  • Yu. L. Vechtomova
    • 1
  • M. S. Kritsky
    • 1
  1. 1.Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of SciencesMoscowRussia
  2. 2.Department of Biology, Moscow State UniversityMoscowRussia

Personalised recommendations