Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 702–711 | Cite as

Optimization of the Process of Air Purification from Dichloromethane in a Biofilter with an Irrigated Layer by Mathematical Modeling

  • S. V. Smirnov
  • O. V. Demin
  • M. L. Torgonskaya
  • Yu. E. Firsova
  • V. G. Zhukov
  • N. A. ZagustinaEmail author
Article
  • 15 Downloads

Abstract

Methods for design of biocatalysts based on modeling and subsequent experimental verification of the model allow maximal use of the destructive potential of a consortia of microorganisms to optimize the functioning of biological filters used in the purification of gas-air emissions of industrial enterprises from volatile halogenated compounds such as dichloromethane. For an increase in the duration and efficiency of biofilters’ operation a systematic approach using methods of system biology and computer mathematical modeling is proposed. The application of this approach allowed us to consider complex regulatory interactions and the entire spectrum of metabolic features of the biological system. Simulation of the air purification process made it possible to select effective regimes in which the conversion of dichloromethane reached 90% at an inlet concentration of 100 mg/m3 and 50–60% at an inlet concentration up to 500 mg/m3.

Keywords:

dichloromethane biofilter with irrigated layer biocatalyst dichloromethane removal efficiency 

Notes

REFERENCES

  1. 1.
    Osterman-Golkar, S., Hussain, S., Walles, S., Anderstam, B., and Sigvardsson, K., Chem. Biol. Interact., 1983, vol. 46, no. 1, pp. 121–130.CrossRefGoogle Scholar
  2. 2.
    Dhillon, S. and Von Burg, R.J., Appl. Toxicol., 1995, vol. 15, no. 4, pp. 329–335.CrossRefGoogle Scholar
  3. 3.
    Line, D.E., Wu, J., Arnold, J.A., Jennings, G.D., and Rubin, A.R., Water Environ. Res., 1997, vol. 69, no. 3, pp. 305–310.CrossRefGoogle Scholar
  4. 4.
    Butler, J.H., Nature, 2000, vol. 403, no. 6767, pp. 260–261.CrossRefGoogle Scholar
  5. 5.
    Andreae, M.O., Atlas, E., Harris, G.W., de Kock, A., Koppmann, R., Maenhaut, W., Mano, S., Pollock, W.H., Rudolph, J., Scharffe, D., Schebeske, G., and Welling, M., J. Geophys. Res., 1996, vol. 101, no. D19, pp. 23603–23613.CrossRefGoogle Scholar
  6. 6.
    Keene, W.C., Khalil, M.A.K., Erikson, IIID.J., McCulloch, A., Graedel, T.E., Lobert, J.M., Aucott, M.L., Gong, S.L., Harper, D.B., Kleiman, G., Midgley, P., Moore, R.M., Seuzaret, C., Sturges, W.T., Benkovitz, C.M., Koropalov, V., Barrie, L.A., and Li, Y.-F., J. Geophys. Res., 1999, vol. 104, no. D7, pp. 8429–8440.CrossRefGoogle Scholar
  7. 7.
    Harper, D.B., Nat. Prod. Rep., 2000, vol. 17, pp. 337–348.CrossRefGoogle Scholar
  8. 8.
    Green, T., Hum. Exp. Toxicol., 1997, vol. 16, no. 1, pp. 3–13.CrossRefGoogle Scholar
  9. 9.
    Thier, R., Wiebel, F.A., Hinkel, A., Burger, A., Bruning, T., Morgenroth, K., Senge, T., Wilhelm, M., and Schulz, T.G., Arch. Toxicol., 1998, vol. 72, no. 10, pp. 622–629.CrossRefGoogle Scholar
  10. 10.
    Starr, T.B., Matanoski, G., Anders, M.W., and Andersen, M.E., Toxicol. Sci., 2006, vol. 91, no. 1, pp. 20–28.CrossRefGoogle Scholar
  11. 11.
    Iranpour, R., Cox, H.H.J., Deshusses, M.A., and Schroeder, E.D., Environ. Prog., 2005, vol. 24, no. 3, pp. 254–267.CrossRefGoogle Scholar
  12. 12.
    Diks, R.M.M., Ottengraf, S.P.P., and Oever, A.H.C., Biodegradation, 1994, vol. 5, pp. 129–141.CrossRefGoogle Scholar
  13. 13.
    Herbst, B. and Wiesmann, U., Water Res., 1996, vol. 30, no. 5, pp. 1069–1076.CrossRefGoogle Scholar
  14. 14.
    Flanagan, W.P., Water Environ. Res., 1998, vol. 70, no. 1, pp. 60–66.CrossRefGoogle Scholar
  15. 15.
    Leisinger, T., Bader, R., Hermann, R., Schmid-Appert, M., and Vuilleumier, S., Biodegradation, 1994, vol. 5, nos. 3–4, pp. 237–248.CrossRefGoogle Scholar
  16. 16.
    Okkerse, W.J.H., Ottengraf, S.P.P., Osinga-Kuipers, B., and Okkerse, M., Biotechnol. Bioeng., 1999, vol. 63, no. 4, pp. 418–430.CrossRefGoogle Scholar
  17. 17.
    Yu, J., Chen, J., and Wang, J., J. Environ. Sci., 2006, vol. 18, no. 6, pp. 1073–1076.CrossRefGoogle Scholar
  18. 18.
    Bailon, L., Nikolausz, M., Kaestner, M., Veiga, M.C., and Kennes, C., Water Res., 2009, vol. 43, pp. 11–20.CrossRefGoogle Scholar
  19. 19.
    Abtahi, M., Naddafi, K., Mesdaghinia, A., Yaghmaeian, K., Nabizadeh, R., Jaafarzadeh, N., Rastkari, N., Nazmara, S., and Saeedi, R., J. Environ. Health Sci. Eng., 2014, vol. 12, no. 1, p. 22.CrossRefGoogle Scholar
  20. 20.
    Beschkov, V., Sapundzhiev, Ts., Torz, M., Wietzes, P., and Janssen, D.B., Chem. Biochem. Eng. Quart., 2008, vol. 22, no. 3, pp. P. 339–348.Google Scholar
  21. 21.
    Wu, S., Yu, X., Hu, Z., Zhang, L., and Chen, J., J. Environ. Sci., 2009, vol. 21, no. 9, pp. 1276–1283.CrossRefGoogle Scholar
  22. 22.
    Yaghmaei, S. and Rashidkhanil, A., Scientia Iranica, 2005, vol. 12, no. 3, pp. 300–305.Google Scholar
  23. 23.
    Doronina, N.V., Trotsenko, Y.A., Tourova, T.P., Kuznetsov, B.B., and Leisinger, T., Syst. Appl. Microbiol., 2000, vol. 23, no. 2, pp. 210–218.CrossRefGoogle Scholar
  24. 24.
    Firsova, Yu.E., Torgonskaya, M.L., Doronina, N.V., and Trotsenko, Yu.A., Appl. Biochemm. Microbiol., 2005, vol. 41, no. 5, pp. 480–485.CrossRefGoogle Scholar
  25. 25.
    Torgonskaya, M.L., Doronina, N.V., Hourcade, E., Trotsenko, Y.A., and Vuilleumier, S., J. Basic Microbiol., 2011, vol. 51, no. 3, pp. 296–303.CrossRefGoogle Scholar
  26. 26.
    Joerg, G. and Bertau, M., Anal. Biochem., 2004, vol. 328, pp. 22–28.CrossRefGoogle Scholar
  27. 27.
    Stucki, G., Gaelli, R., Ebersold, H.R., and Leisinger, T., Arch. Microbiol., 1981, vol. 130, no. 5, pp. 366–371.CrossRefGoogle Scholar
  28. 28.
    CRC Handbook of Chemistry and Physics, Lide, D.R., Ed., CRC Press, 1993, 74th ed.Google Scholar
  29. 29.
    US Environmental Protection Agency Data. https:// www3.epa.gov/ceampubl/learn2model/part-two/onsite/ esthenry.html.Google Scholar
  30. 30.
    Scholtz, R., Wackett, L.P., Egli, C., Cook, A.M., and Leisinger, T., J. Bacteriol., 1988, vol. 170, no. 12, pp. 5698–5704.CrossRefGoogle Scholar
  31. 31.
    Vuilleumier, S., Ivos, N., Dean, M., and Leisinger, T., Microbiology, 2001, vol. 147, no. 3, pp. 611–619.CrossRefGoogle Scholar
  32. 32.
    Marsh, A. and Ferguson, D.M., Proteins: Struct., Funct., Genet., 1997, vol. 28, no. 2, pp. 217–226.CrossRefGoogle Scholar
  33. 33.
    Cornish-Bowden, A., Fundamentals of Enzyme Kinetics, London, U.K.: Portland Press, 1995.Google Scholar
  34. 34.
    Booth, I.R., Microbiol. Rev., 1985, vol. 49, no. 4, pp. 359–378.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Smirnov
    • 1
  • O. V. Demin
    • 1
  • M. L. Torgonskaya
    • 2
  • Yu. E. Firsova
    • 2
  • V. G. Zhukov
    • 3
  • N. A. Zagustina
    • 3
    Email author
  1. 1.InSysBioMoscowRussia
  2. 2.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of SciencesPushchinoRussia
  3. 3.Bach Institute of Biochemistry, Fundamental Foundations of Biotechnology Federal Research Center, Russian Academy of SciencesMoscowRussia

Personalised recommendations