Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 616–623 | Cite as

Identification and Functional Characterization of an Endoglucanase KRICT PC-001 from Paenibacillus terrae HPL-003

  • D. R. Kim
  • H. K. Lim
  • I. T. HwangEmail author
Article
  • 17 Downloads

Abstract

The gene encoding 1,4-β-endoglucanase KRICT PC-001 (1.722 bp; 573 aa) was revealed by a full-length sequence analysis of the bacterium Paenibacillus terrae HPL-003 (KCTC 11987BP) isolated from the soil on Gara Mountain in Korea (CP003107). The molecular weight of the enzyme was estimated as 62 kDa by SDS-PAGE analysis. Endoglucanase KRICT PC-001 contains a catalytic domain of the glycosyl hydrolase family 5 (GH5) and a carbohydrate-binding module X2 (CBM X2). The soluble fraction of the recombinant protein was overexpressed with the pGEX-fusion vector in Escherichia coli BL21 (DE3) and purified using glutathione S-transferase column. The recombinant protein was digested with Factor Xa and eluted from a benzamidine column. Carboxymethyl cellulose was used as a substrate for the enzyme activity analysis. Endoglucanase KRICT PC-001 exhibited a maximum specific activity of 589 U/mg of protein at a temperature of 50°C and pH 5.0.

Keywords:

carboxymethylcellulose endoglucanase overexpression Paenibacillus terrae 

REFERENCES

  1. 1.
    Hubbard, W. and Biles, L., Sustainable Forestry for Bioenergy and Bio-based Products: Trainers Curriculum, Mayfield, C. and Ashton, S., Eds., Athens, GA: Southern Forest Research Partnership, Inc., 2007, pp. 169–172.Google Scholar
  2. 2.
    McKendry, P., Biores. Technol., 2002, vol. 83, pp. 37–46.CrossRefGoogle Scholar
  3. 3.
    Xu, J., Jiang, J., Hseb, C., and Shupec, T.F., Green Chem., 2012, vol. 14, pp. 2821–2830.CrossRefGoogle Scholar
  4. 4.
    Biomass Sugars for Non-Fuel Applications, Murzin, D. and Simakova, O., Eds., London, UK: Royal Society of Chemistry, 2015, pp. 1–53.Google Scholar
  5. 5.
    Cellulase: Types and Action, Mechanism and Uses, Golan, A.E., Ed., New York: Nova Science Publishers, Inc., 2011.Google Scholar
  6. 6.
    Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, Yang, S.T., El-Enshasy, H.A., and Thongchul, N., Eds., New York: John Wiley and Sons, Inc., 2013, 1st ed.Google Scholar
  7. 7.
    Yang, B., Dai, Z., Ding, S.Y., and Wyman, C.E., Biofuels, 2011, vol. 2, no. 4, pp. 421–450.CrossRefGoogle Scholar
  8. 8.
    Kuhad, R.C., Gupta, R., and Singh, A., Enzyme Res., 2011, vol. 2011, pp. 1–10.CrossRefGoogle Scholar
  9. 9.
    Fleming, D. and Rumbaugh, K.P., Microorganisms, 2017, vol. 5, no. 2, pp. 15–31.CrossRefGoogle Scholar
  10. 10.
    Bignell, D.E., Roisin, Y., and Lo, N., Biology of Termites: A Modern Synthesis, Bignell, D.E., Roisin, Y., and Lo, N., Eds., Dordrecht: Springer, 2011. ISBN 978-90-481-3976-7.CrossRefGoogle Scholar
  11. 11.
    Watanabe, H., Noda, H., Tokuda, G., and Lo, N., Nature, 1998, vol. 394, no. 6691, pp. 330–331.CrossRefGoogle Scholar
  12. 12.
    Shin, S.H., Kim, S.W., Kim, J.Y., Song, H.Y., Cho, S.J., Kim, D.R., et al., J. Bacteriol., 2012, vol. 194, no. 5, pp. 1266–1266.CrossRefGoogle Scholar
  13. 13.
    Song, H.Y., Lim, H.K., Kim, D.R., Lee, K.I., and Hwang, I.T., Enzyme Microb. Technol., 2014, vol. 54, pp. 1–7.CrossRefGoogle Scholar
  14. 14.
    Kim, D.R., Lim, H.K., Lee, K.I., and Hwang, I.T., Enzyme Microb. Technol., 2016, vol. 93, pp. 166–173.CrossRefGoogle Scholar
  15. 15.
    Florencio, C., Couri, S., and Farinas, C.S., Enzyme Res., 2012, vol. 2012, pp. 1–7.CrossRefGoogle Scholar
  16. 16.
    McCleary, B.V., Mangan, D., Daly, R., Fort, S., Ivory, R., and McCormack, N., Carbohydr. Res., 2014, vol. 385, pp. 9–17.CrossRefGoogle Scholar
  17. 17.
    Kim, S.C., Kang, S.H., Choi, E.Y., Hong, Y.H., Bok, J.D., Kim, J.Y., et al., J. Anim. Sci., 2016, vol. 29, no. 1, pp. 126–133.Google Scholar
  18. 18.
    Ariffin, H., Abdullah, N., Kalsom, M.S.U., Shirai, Y., and Hassan, M.A., Int. J. Eng. Technol., 2006, vol. 3, pp. 47–53.Google Scholar
  19. 19.
    Samira, M., Mohammad, R., and Gholamreza, G., Microbiol. J., 2011, vol. 1, no. 1, pp. 8–16.CrossRefGoogle Scholar
  20. 20.
    Miller, G.L., Anal. Chem., 1959, vol. 31, pp. 426–428.CrossRefGoogle Scholar
  21. 21.
    Bansal, P., Hall, M., Realff, M.J., Lee, J.H., and Bommarius, A.S., Biotechnol. Adv., 2009, vol. 27, pp. 833–848.CrossRefGoogle Scholar
  22. 22.
    Sadhu, S., Saha, P., Sen, S.K., Mayilraj, S., and Maiti, T.K., SpringerPlus, 2013, vol. 2, pp. 10–20. https://doi.org/10.1186/2193-1801-2-10.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Green Carbon Conversion Catalyst Research Group, Carbon Resource Institute, Korea Research Institute of Chemical TechnologyDaejeonRepublic of Korea
  2. 2.Department of Green Chemistry and Environmental Biotechnology, University of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations