Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 670–676 | Cite as

Highly Sensitive Immunochromatographic Detection of Antibiotic Ciprofloxacin in Milk

  • O. D. Hendrickson
  • E. A. Zvereva
  • I. A. Shanin
  • A. V. Zherdev
  • N. Tarannum
  • B. B. Dzantiev


In this study, highly sensitive immunochromatographic analyses (ICAs) of ciprofloxacin (CIP) are developed. CIP is an antibiotic of the fluoroquinolone group that is widely used in veterinary practice and contaminates agricultural products. The analyses are based on various techniques that introduce gold nanoparticles as markers. It has been shown that the schemes allow for the detection of CIP within 15 min with an instrumental detection limit of 10 pg/mL for both schemes and visual detection limits of 10 and 2 ng/mL for direct and indirect schemes, respectively. The developed systems have been tested to detect the antibiotic in milk samples. It has been shown that ICA can determine CIP in milk using a simple procedure of preliminary sample preparation with preservation of high analytical characteristics.


antibiotic ciprofloxacin immunochromatographic analysis food safety 


  1. 1.
    Zhang, G.F., Zhang, S., Pan, B., Liu, X., and Feng, L.S., Eur. J. Med. Chem., 2018, vol. 143, pp. 710–723.CrossRefGoogle Scholar
  2. 2.
    Abbas, M., Paul, M., and Huttner, A., Clin. Microbiol. Infect., 2017, vol. 23, no. 10, pp. 697–703.CrossRefGoogle Scholar
  3. 3.
    Higgins, P.G., Fluit, A.C., and Schmitz, F.J., Curr. Drug Targets, 2003, vol. 4, no. 2, pp. 181–190.CrossRefGoogle Scholar
  4. 4.
    Vardakas, K.Z., Trigkidis, K.K., and Falagas, M.E., Clin. Microbiol. Infect., 2017, vol. 23, no. 4, pp. 234–241.CrossRefGoogle Scholar
  5. 5.
    Pallo-Zimmerman, L.M., Byron, J.K., and Graves, T.K., Compend. Contin. Educ. Vet., 2010, vol. 32, no. 7, pp. E1–E9.CrossRefGoogle Scholar
  6. 6.
    Martinez, M., McDermott, P., and Walker, R., Vet. J., 2006, vol. 172, no. 1, pp. 10–28.CrossRefGoogle Scholar
  7. 7.
    Firth, C.L., Käsbohrer, A., Schleicher, C., Fuchs, K., Egger-Danner, C., Mayerhofer, M., Schobesberger, H., Köfer, J., and Obritzhauser, W., Peer J., 2017, vol. 5. e4072.Google Scholar
  8. 8.
    Prescott, J.F., Microbiol. Spectr., 2017, vol. 5, no. 6. ARBA-0002-2017.Google Scholar
  9. 9.
    McCrackin, M.A., Helke, K.L., Galloway, A.M., Poole, A.Z., Salgado, C.D., and Marriott, B.P., Crit. Rev. Food Sci. Nutrit., 2016, vol. 56, no. 13, pp. 2115–2132.CrossRefGoogle Scholar
  10. 10.
    Hudson, J.A., Frewe, L.J., Jones, G., Brereton, P.A., Whittingham, M.J., and Stewart, G., Trends Food Sci. Technol., 2017, vol. 69, pp. 131–147.CrossRefGoogle Scholar
  11. 11. Scholar
  12. 12. Scholar
  13. 13.
    Chierentin, L. and Salgado, H.R.N., CRC Crit. Rev. Anal. Chem., 2016, vol. 46, no. 1, pp. 22–39.CrossRefGoogle Scholar
  14. 14.
    Ziarrusta, H., Val, N., Dominguez, H., Mijangos, L., Prieto, A., Usobiaga, A., Etxebarria, N., Zuloaga, O., and Olivares, M., Anal. Bioanal. Chem., 2017, vol. 409, no. 27, pp. 6359–6370.CrossRefGoogle Scholar
  15. 15.
    Belal, F., El-Enany, N., and Wahba, M.E.K., Rev. Anal. Chem., 2017, vol. 36, no. 2, article 20150020.CrossRefGoogle Scholar
  16. 16.
    Zhang, Z.C. and Cheng, H.F., CRC Crit. Rev. Anal. Chem., 2017, vol. 47, no. 3, pp. 223–250.CrossRefGoogle Scholar
  17. 17.
    Zeng, H., Chen, J., Zhang, C., Huang, X.A., Sun, Y., Xu, Z., and Lei, H., Anal. Chem., 2016, vol. 88, no. 7, pp. 3909–3916.CrossRefGoogle Scholar
  18. 18.
    Suryoprabowo, S., Liu, L., Peng, J., Kuang, H., and Xu, C., Food Anal. Met., 2014, vol. 7, no. 10, pp. 2163–2168.CrossRefGoogle Scholar
  19. 19.
    Huang, B., Yin, Y., Lu, L., Ding, H., Wang, L., Yu, T., Zhu, J.J., Zheng, X.D., and Zhang, Y.Z., Zhejiang Univ. Sci., 2010, vol. 11, no. 10, pp. 812–818.CrossRefGoogle Scholar
  20. 20.
    Li, Y.Z., Zhao, G.X., Liu, J., Zhang, H.C., Wang, P., and Wang, J.P., J. Sci. Food Agric., 2013, vol. 93, no. 6, pp. 1370–1377.CrossRefGoogle Scholar
  21. 21.
    Fan, G.Y., Yang, R.S., Jiang, J.Q., Chang, X.Y., Chen, J.J., Qi, Y.H., Wu, S.X., and Yang, X.F., J. Zhejiang Univ. Sci., vol. 13, no. 7, pp. 545–554.Google Scholar
  22. 22.
    Dzantiev, B.B., Byzova, N.A., Urusov, A.E., and Zherdev, A.V., TrAC, Trends Anal. Chem. (Pers. Ed.), 2014, vol. 55, pp. 81–93.Google Scholar
  23. 23.
    Peng, J., Liu, L., Kuang, H., Cui, G., and Xu, C., Food Agric. Immunol., 2017, vol. 28, no. 2, pp. 288–298.CrossRefGoogle Scholar
  24. 24.
    Peng, J., Liu, L., Xu, L., Song, S., Kuang, H., Cui, G., and Xu, C., Nano Res., 2017, vol. 10, no. 1, pp. 108–120.CrossRefGoogle Scholar
  25. 25.
    Mukunzi, D., Isanga, J., Suryoprabowo, S., Liu, L., and Kuang, H., Food Agric. Immunol., 2017, vol. 28, no. 4, pp. 599–611.CrossRefGoogle Scholar
  26. 26.
    Watanabe, H., Satake, A., Kido, Y., and Tsuji, A., Analyst, 2002, vol. 127, no. 1, pp. 98–103.CrossRefGoogle Scholar
  27. 27.
    Sheng, W., Li, S., Liu, Y., Wang, J., Zhang, Y., and Wang, S., Microkhim. Acta, 2017, vol. 184, no. 11, pp. 4313–4321.CrossRefGoogle Scholar
  28. 28.
    Chen, X., Xu, H., Lai, W., Chen, Y., Yang, X., and Xiong, Y., Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2012, vol. 29, no. 3, pp. 383–391.Google Scholar
  29. 29.
    Liu, L., Luo, L., Suryoprabowo, S., Peng, J., Kuang, H., and Xu, C., Sensors (Basel), 2014, vol. 14, no. 9, pp. 16785–16798.CrossRefGoogle Scholar
  30. 30.
    Petrakova, A.V., Urusov, A.E., Gubaydullina, M.K., Bartosh, A.V., Zherdev, A.V., and Dzantiev, B.B., Talanta, 2017, vol. 175, pp. 77–81.CrossRefGoogle Scholar
  31. 31.
    Urusov, A.E., Petrakova, A.V., Zherdev, A.V., and Dzantiev, B.B., Biosens. Bioelectron., 2016, vol. 86, pp. 575–579.CrossRefGoogle Scholar
  32. 32.
    Urusov, A.E., Petrakova, A.V., Gubaydullina, M.K., Zherdev, A.V., Eremin, S.A., Kong, D., Liu, L., Xu, C., and Dzantiev, B.B., Biotechnol. Lett., 2017, vol. 39, no. 5, pp. 751–758.CrossRefGoogle Scholar
  33. 33.
    Byzova, N.A., Smirnova, N.I., Zherdev, A.V., Eremin, S.A., Shanin, I.A., Lei, H.T., Sun, Y., and Dzantiev, B.B., Talanta, 2014, vol. 119, pp. 125–132.CrossRefGoogle Scholar
  34. 34.
    Frens, G., Nat. Phys. Sci., 1973, vol. 241, pp. 20–22.CrossRefGoogle Scholar
  35. 35.
    Byzova, N.A., Zvereva, E.A., Zherdev, A.V., Eremin, S.A., and Dzantiev, B.B., Talanta, 2010, vol. 81, no. 3, pp. 843–848.CrossRefGoogle Scholar
  36. 36.
    Uhrovcik, J., Talanta, 2014, vol. 119, pp. 178–180.CrossRefGoogle Scholar
  37. 37.
    Byzova, N.A., Safenkova, I.V., Slutskaya, E.S., Zherdev, A.V., and Dzantiev, B.B., Bioconjug. Chem., 2017, vol. 28, no. 11, pp. 2737–2746.CrossRefGoogle Scholar
  38. 38.
    Byzova, N.A., Zvereva, E.A., Zherdev, A.V., Eremin, S.A., Sveshnikov, P.G., and Dzantiev, B.B., Anal. Chim. Acta, 2011, vol. 701, no. 2, pp. 209–217.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • O. D. Hendrickson
    • 1
  • E. A. Zvereva
    • 1
  • I. A. Shanin
    • 2
    • 3
  • A. V. Zherdev
    • 1
  • N. Tarannum
    • 4
  • B. B. Dzantiev
    • 1
  1. 1.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.“Chema”MoscowRussia
  4. 4.Chaudhary Charan Singh UniversityMeerutIndia

Personalised recommendations