Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 569–576 | Cite as

Biochemical Properties of Recombinant Chymosin in Alpaca (Vicugna pacos L.)

  • S. V. Belenkaya
  • A. P. Rudometov
  • D. N. Shcherbakov
  • D. V. Balabova
  • A. V. Kriger
  • A. N. Belov
  • A. D. Koval
  • V. V. ElchaninovEmail author
Article
  • 24 Downloads

Abstract

This paper discusses biochemical properties of the recombinant chymosin in alpaca (Vicugnapacos), which influence the production of rennet cheeses. These properties determine its value in the production of rennet cheeses. Recombinant bovine chymosins are used as a control. In comparison to them, the recombinant alpaca chymosin is characterized by a high specificity towards bovine κ-casein: the threshold for its thermal inactivation is 10–15°C higher and reaches 60°C. The nature of the relation of its specific activity to the pH and concentration of CaCl meets the requirements for the use of milk-clotting enzymes in the production of rennet cheeses.

Keywords:

recombinant alpaca chymosin biochemical properties proteolytic activity thermal stability 

Notes

REFERENCES

  1. 1.
    Belov, A.N., El’chaninov, V.V., and Koval’, A.D., Syrodelie maslodelie, 2004, no. 1, pp. 14–16.Google Scholar
  2. 2.
    Feijoo-Siota, L., Blasco, L., Rodríguez-Rama, J.L., Barros-Velázquez, J., De Miguel, T., Sánchez-Pérez, A, and Villa, T.G., Recent Adv. DNA Gene Seq., 2014, vol. 8, no. 1, pp. 44–55.Google Scholar
  3. 3.
    Harboe, M., Broe, M.L., and Qvist, K.B., Technology of Cheesemaking, New York: J. Wiley and Sons, 2010.Google Scholar
  4. 4.
    Jacob, M., Jaros, D., and Rhom, H., Int. J. Dairy Technol., 2011, vol. 64, no. 1, pp. 14–33.CrossRefGoogle Scholar
  5. 5.
    Kimberlin, R.H., in Transmissible Subacute Spongiform Encephalopath.: Prion Diseases, Materials of the 3rd International Symposium. Subacute Spongiform Encephalopath. Prion Diseases, Paris: Elsevier, 1996, pp. 487–502.Google Scholar
  6. 6.
    Kappeler, S.R., van den Brink, H.(J.)M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E.B., and Johansen, E., Biochem. Biophys. Res. Commun., 2006, vol. 2, no. 342, pp. 647–654.CrossRefGoogle Scholar
  7. 7.
    Chad, E.K., De Peters, E.J., Puschner, B., Taylor, S.J., and Robison, J., Small Ruminant Res, 2014, vol. 117, nos. 2–3, pp. 165–168.CrossRefGoogle Scholar
  8. 8.
    Oftedal, O.T. and Iverson, S.J., Handbook of Milk Composition. Comparative Analysis of Nonhuman Milks, New York: Acad. Press, 1995.Google Scholar
  9. 9.
    Hambræus, L. and Lӧnnerdal, B., Advanced Dairy Chemistry, New York: Kluwer Academic/Plenum, 2003.Google Scholar
  10. 10.
    Parraguez, V.H., Thénot, M., Latorre, E., Ferrando, G., and Raggi, L., Arch. Zootec., 2003, vol. 52, no. 200, pp. 431–439.Google Scholar
  11. 11.
    Maniatis, T., Fritsch, E. F., and Sambrook, J., Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982.Google Scholar
  12. 12.
    Wei, C., Tang, B., Zhang, Y., and Yang, K., Biochem. J., 1999, vol. 340, no. 1, pp. 345–351.CrossRefGoogle Scholar
  13. 13.
    El’chaninov, V.V., Syrodelie Maslodelie, 2006, no. 4, pp. 42–44.Google Scholar
  14. 14.
    El’chaninov, V.V., Umanskii, M.S., Belov, A.N., Koval’, A.D., and Shelepov, V.G., Syrodelie Maslodelie, 2005, no. 4, pp. 13–16.Google Scholar
  15. 15.
    Belov, A.N., Koval’, A.D., Avdanina, E.A., and El’chaninov, V.V., Syrodelie Maslodelie, 2009, no. 1, pp. 22–24.Google Scholar
  16. 16.
    Murunova, G.V. and Sviridenko, Yu.Ya., Syrodelie Maslodelie, 2006, no. 5, pp. 2–5.Google Scholar
  17. 17.
    Emmons, D.B., Beckett, D.C., and Binns, M., J. Dairy Sci., 1990, vol. 73, no. 8, pp. 2007–2015.CrossRefGoogle Scholar
  18. 18.
    Singh, T.K., Drake, M.A., and Cadwallader, K.R., Compr. Rev. Food Sci. Food Safety, 2003, vol. 2, no. 4, pp. 139–162.CrossRefGoogle Scholar
  19. 19.
    Vallejo, J.A., Ageitos, J.M., Poza, M., and Villa, T.G., J. Dairy Sci., 2012, vol. 95, no. 2, pp. 609–613.CrossRefGoogle Scholar
  20. 20.
    Costabel, L.M., Bergamini, C.V., Pozza, L., Cuffia, F., Candioti, M.C., and Hynes, E., J. Dairy Res., 2015, vol. 82, no. 3, pp. 375–384.CrossRefGoogle Scholar
  21. 21.
    Bansal, N., Drake, M.A., Piraino, P., Broe, M.L., Harboe, M., Fox, P.F., and McSweeney, P.H.L., Int. Dairy J., 2009, vol. 19, no. 9, pp. 510–517.CrossRefGoogle Scholar
  22. 22.
    Rogelj, I., Perko, B., Francky, A., Penca, V., and Purgencar, J., J. Dairy Sci., 2001, vol. 84, no. 5, pp. 1020–1026.CrossRefGoogle Scholar
  23. 23.
    Upadhyay, V.K., McSweeney, P.L.H., Magboul, A.A.A, and Fox, P.F., Cheese Chemistry, Physics and Microbiology, London: Elsevier Acad. Press, 2004, pp. 391–433.Google Scholar
  24. 24.
    Bansal, N., Fox, P., and McSweeney, P.H.L., J. Dairy Res., 2009, vol. 76, no. 3, pp. 290–293.CrossRefGoogle Scholar
  25. 25.
    Cross, K.J., Huq, L., Palamara, J.P., Perich, J.W., and Reinolds, E.C., J. Biol. Chem., 2005, vol. 280, no. 15, pp. 15362–15369.CrossRefGoogle Scholar
  26. 26.
    Lucey, J.A., J. Dairy Sci., 2002, vol. 85, no. 2, pp. 281–294.CrossRefGoogle Scholar
  27. 27.
    Maiorov, A.A., Mironenko, I.M., and Baibikova, A.A., Syrodelie Maslodelie, 2011, no. 2, pp. 19–23.Google Scholar
  28. 28.
    Wang, N., Wang, K.Y., Li, G., Guo, W., and Liu, D., Protein Expr. Purif., 2015, vol. 111, pp. 75–81.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Belenkaya
    • 1
  • A. P. Rudometov
    • 1
  • D. N. Shcherbakov
    • 1
    • 2
  • D. V. Balabova
    • 2
    • 3
  • A. V. Kriger
    • 3
  • A. N. Belov
    • 3
  • A. D. Koval
    • 3
  • V. V. Elchaninov
    • 3
  1. 1.State Research Center of Virology and Biotechnology “Vector” RospotrebnadzoraKoltsovoRussia
  2. 2.Altai State UniversityBarnaulRussia
  3. 3.Federal Altai Scientific Center for Agrobiotechnology, Siberian Research Institute for Cheese MakingBarnaulRussia

Personalised recommendations