Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 649–657 | Cite as

Characterization of Bacterial Cellulose Produced using Media Containing Waste Apple Juice

  • S. Bandyopadhyay
  • N. SahaEmail author
  • P. Saha
Article
  • 35 Downloads

Abstract

The present study involves bacterial cellulose (BC) production using freshly prepared apple juice medium (AJM) and the bacterial strain Gluconobacter xylinum CCM 3611T. The AJM was modified with ammonium sulfate, dipotassium phosphate, sucrose, acetic acid, with and without ethanol. BC sheets (in the dry state) were analyzed on the basis of morphological, rheological and structural properties, thermal stability, water holding capacity (WHC) and water absorption capacity (WAC). Comparative X-ray diffractograms of BC using cobalt radiation is observed for the first time. The WAC analysis revealed that lyophilized BC samples had the higher WAC than the oven air-dried samples. There is an evidential structural difference observed in BC prepared from different AJM. Moreover, the AJM modified with only ethanol, exhibited quite a significant yield of BC. BC produced from the medium without ethanol had the highest thermal stability, viscoelasticity, and WHC.

Keywords:

bacterial cellulose Co X-ray diffraction water holding capacity water absorption capacity viscoelastic property 

REFERENCES

  1. 1.
    Römling, U., Res. Microbiol., 2002, vol. 153, no. 4, pp. 205–212.CrossRefGoogle Scholar
  2. 2.
    Lin, S.-P., Calvar, I.L., Catchmark, J.M., Liu, J.-R., Demirci, A., and Cheng, K.-C., Cellulose, 2013, vol. 20, no. 5, pp. 2191–2219.CrossRefGoogle Scholar
  3. 3.
    Bielecki, S., Krystynowicz, A., Turkiewicz, M., and Kalinowska, H., Biopolymers Online, New York: John Wiley and Sons, Hoboken, 2005.Google Scholar
  4. 4.
    Hestrin, S. and Schramm, M., Biochem. J., 1954, vol. 58, no. 2, pp. 345–352.CrossRefGoogle Scholar
  5. 5.
    Kurosumi, A., Sasaki, C., Yamashita, Y., and Nakamura, Y., Carbohydr. Polym., 2009, vol. 76, no. 2, pp. 333–335.CrossRefGoogle Scholar
  6. 6.
    Hungund, B.S. and Gupta, S.G., World J. Microbiol. Biotechnol., 2010, vol. 26, no. 10, pp. 1823–1828.CrossRefGoogle Scholar
  7. 7.
    Jang, W.D., Hwang, J.H., Kim, H.U., Ryu, J.Y., and Lee, S.Y., Microb. Biotechnol., 2017, vol. 10, no. 5, pp. 1181–1185.CrossRefGoogle Scholar
  8. 8.
    Velásquez-Riaño, M. and Bojacá, V., Cellulose, 2017, vol. 24, no. 7, pp. 2677–2698.CrossRefGoogle Scholar
  9. 9.
    Food and Agriculture Organization of the United Nations. FAOSTAT Database, Rome, Italy: FAO, 2014. Retrieved November 8, 2017. http://www.fao.org/ faostat/en/#data/QC.Google Scholar
  10. 10.
    Neera, Ramana, K.V., and Batra, H.V., Appl. Biochem. Biotechnol., 2015, vol. 176, no. 4, pp. 1162–1173.CrossRefGoogle Scholar
  11. 11.
    Food and Agriculture Organization of the United Nations. FAOSTAT Database, Rome, Italy: FAO, 2017. Retrieved November 8, 2017. http://www.fao.org/save-food/ resources/keyfindings/en/.Google Scholar
  12. 12.
    Urbina, L., Hernández, M., Eceiza, A., Gabilondo, N., Corcuera, M.A., Prieto, M.A., and Retegi, A., Cellulose, 2017, vol. 24, no. 5, pp. 2071–2082.CrossRefGoogle Scholar
  13. 13.
    Semjonovs, P., Ruklisha, M., Paegle, L., Saka, M., Treimane, R., Skute, M., et al., Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 3, pp. 1003–1012.CrossRefGoogle Scholar
  14. 14.
    Gromovykh, T.I., Sadykova, V.S., Lutcenko, S.V., Dmitrenok, A.S., Feldman, N.B., Danilchuk, T.N., and Kashirin, V.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 60–67.CrossRefGoogle Scholar
  15. 15.
    Chinnici, F., Spinabelli, U., Riponi, C., and Amati, A., J. Food Compost. Anal., 2005, vol. 18, no. 2-3, pp. 121–130.CrossRefGoogle Scholar
  16. 16.
    Schrecker, S.T. and Gostomski, P.A., Biotechnol. Lett., 2005, vol. 27, no. 19, pp. 1435–1438.CrossRefGoogle Scholar
  17. 17.
    Shezad, O., Khan, S., Khan, T., and Park, J.K., Carbohydr. Polym., 2010, vol 82, no. 1, pp. 173–180.CrossRefGoogle Scholar
  18. 18.
    Mohite, B.V. and Patil, S.V., Carbohydr. Polym., 2014, vol. 106, pp. 132–141.CrossRefGoogle Scholar
  19. 19.
    Gea, S., Reynolds, C.T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E., and Peijs, T., Bioresour. Technol., 2011, vol. 102, no. 19, pp. 9105–9110.CrossRefGoogle Scholar
  20. 20.
    Moharram, M.A., and Mahmoud, O.M., J. Appl. Polym. Sci., 2008, vol. 107, no. 1, pp. 30–36.CrossRefGoogle Scholar
  21. 21.
    Movasaghi, Z., Rehman, S., and Rehman, D.I. ur., Appl. Spectrosc Rev., 2008, vol. 43, no. 2, pp. 134–179.CrossRefGoogle Scholar
  22. 22.
    Advantages of a Cu vs. Co X-ray Diffraction Source. Triclinic Labs News and Announcements Database, Lafayette, Indiana: Triclinic Labs Inc., USA, 2012. Retrieved November 8, 2017. http://tricliniclabs. com/downloadable-documents/Advantages%20of% 20a%20Cu%20vs.%20Co%20X-ray%20Diffraction% 20Source%20-%20Stahly%20-%20Triclinic%20Labs% 20-Q32012.pdf.Google Scholar
  23. 23.
    Kourkoumelis N., Powder diffraction, ICDD Annual Spring Meetings, O’Neill, Ed., London, 2013, vol. 28, pp. 137–148.Google Scholar
  24. 24.
    Klechkovskaya, V.V., Baklagina, Y.G., Stepina, N.D., Khripunov, A.K., Buffat, P.A., Suvorova, E.I., et al., Crystallogr. Rep., 2003, vol. 48, no. 5, pp. 755–762.CrossRefGoogle Scholar
  25. 25.
    Ford, E.N.J., Mendon, S.K., Thames, S.F., and Rawlins, J.W., J. Eng. Fibers Fabr., 2010, vol. 5, no. 1, pp. 10–20.Google Scholar
  26. 26.
    Feng, X., Ullah, N., Wang, X., Sun, X., Li, C., Bai, Y., et al., J. Food Sci., 2015, vol. 80, no. 10, pp. E2217–E2227.CrossRefGoogle Scholar
  27. 27.
    Li, H., Zhang, W., Xu, W., and Zhang, X., Macromolecules, 2000, vol. 33, no. 2, pp. 465–469.CrossRefGoogle Scholar
  28. 28.
    Kim, J.Y., and Kim, S.H., Nanocomposites—New Trends and Developments, Ebrahim, F., Ed., InTech, 2012.Google Scholar
  29. 29.
    Tatsumi, D. and Matsumoto, T., J. Cent. South Univ. Technol., 2007, vol. 14, suppl. 1, pp. 250–253.CrossRefGoogle Scholar
  30. 30.
    Roy, N., Saha, N., Kitano, T., and Saha, P., J. Appl. Polym. Sci., 2010, vol. 117, no. 3, pp. 1703–1710.Google Scholar
  31. 31.
    Barud, H.S., Ribeiro, C.A., Crespi, M.S., Martines, M.A.U., Dexpert-Ghys, J., Marques, R.F.C., et al., J. Therm. Anal. Calorim., 2007, vol. 87, no. 3, pp. 815–818.CrossRefGoogle Scholar
  32. 32.
    Poletto, M., Pistor, V., and Zattera, A.J., Cellulose—Fundamental Aspects, van de Ven, T. and Godbout, L., Eds., InTech, 2013.Google Scholar
  33. 33.
    Ougiya, H., Watanabe, K., Matsumura, T., and Yoshinaga, F., Biosci. Biotechnol. Biochem., 1998, vol. 62, no. 9, pp. 1714–1719.CrossRefGoogle Scholar
  34. 34.
    Mirhosseini, H. and Amid, B.T., Chem. Cent. J., 2013, vol. 7, no. 1, pp. 1–14.CrossRefGoogle Scholar
  35. 35.
    Chau, C.F. and Huang, Y.L., Food Chem., 2004, vol. 85, no. 2, pp. 189–194.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Centre of Polymer Systems, University Institute, Tomas Bata University in ZlinZlinCzech Republic

Personalised recommendations