Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 677–681 | Cite as

Anti-Trinitrotoluene Aptamers: Design, Functional Assessment and Optimization

  • M. Alipour
  • M. ZeinoddiniEmail author
  • A.R. Saeeidinia
Article
  • 15 Downloads

Abstract

The aim of this work is detection of trinitrotoluene (TNT) using aptamer as a new sensing strategy. Two pBluescript plasmids containing RT and ST anti-TNT aptamers were used as templates for aptamer amplification by PCR method. For this purpose, 126 bp ST-aptamer and 118 bp RT-aptamer were amplified using specific primers. TNT bound to bovine serum albumin (TNP-BSA) was used as the antigen, and digoxigenin (DIG)-labeled aptamers were detected by horseradish peroxidase conjugated to anti-DIG monoclonal antibodies. The sensitivity and specificity of ST- and RT-aptamers were determined using optimized PCR and enzyme-linked aptamer-sorbent assay. The sensitivity of this detection after optimization was determined about 1.76 nM of TNT using 1 pM of aptamers. These results indicated favorable functions of both aptamers for TNT detection that can be used in the future as aptasensors for investigation and utilization of the TNT identification.

Keywords:

aptamer trinitrotoluene detection of explosives PCR enzyme-linked aptamer-sorbent assay 

REFERENCES

  1. 1.
    Clausen, J., Robb, J., Curry, D., and Korte, N., Environ. Pollut., 2004, vol. 129, pp. 13–21.CrossRefGoogle Scholar
  2. 2.
    Aspects of Explosives Detection, Marshall, M. and Oxley, J.C., Eds., Oxford: Elsevier, 2009.Google Scholar
  3. 3.
    Makinen, M., Nousiainen, M., and Sillanpaa, M., Mass Spectrom Rev., 2011, vol. 30, no. 5, pp. 940–973.Google Scholar
  4. 4.
    Marcus, L.S., Holthoff, E.L., and Pellegrino, P.M., Appl. Spectrosc., 2017, vol. 71, no. 5, pp. 833–838.CrossRefGoogle Scholar
  5. 5.
    Caygill, J.S., Davis, F., and Higson, S.P., Talanta, 2012, vol. 88, pp. 14–29.CrossRefGoogle Scholar
  6. 6.
    Singh, S., J. Hazard. Mater., 2007, vol. 144, nos. 1–2, pp. 15–28.CrossRefGoogle Scholar
  7. 7.
    Spitzer, D., Cottineau, T., Piazzon, N., Josset, S., Schnell, F., Pronkin, S.N., et al., Angew. Chem. Int. Ed. Engl., 2012, vol. 51, no. 22, pp. 5334–5338.CrossRefGoogle Scholar
  8. 8.
    Habib, M.K., Biosens. Bioelectron., 2007, vol. 23, no. 1, pp. 1–18.CrossRefGoogle Scholar
  9. 9.
    Smith, R.G., D’Souza, N., and Nicklin, S., Analyst, 2008, vol. 133, no. 5, pp. 571–584.CrossRefGoogle Scholar
  10. 10.
    Charles, P.T., Shriver-Lake, L.C., Francesconi, S.C., et al., J. Immunol. Methods, 2004, vol. 284, pp. 15–26.CrossRefGoogle Scholar
  11. 11.
    Goldman, E.R., Hayhurst, A., Lingerfelt, B.M., Iverson, B.L., Georgiou, G., and Anderson, G.P., J. Environ. Monit., 2003, vol. 5, no. 3, pp. 380–383.CrossRefGoogle Scholar
  12. 12.
    Sun, H. and Zu, Y., Molecules, 2015, vol. 20, pp. 11959–11980.CrossRefGoogle Scholar
  13. 13.
    Saberian-Borujeni, M., Johari-Ahar, M., Hamzeiy, H., Barar, J., and Omidi, Y., Bioimpacts: BI, 2014, vol. 4, pp. 205–215.CrossRefGoogle Scholar
  14. 14.
    Ilgu, M. and Nilsen-Hamilton, M., 2016, vol. 14, no. 5, pp. 1551–1568.Google Scholar
  15. 15.
    Toh, S.Y., Citartan, M., Gopinath, S.C., and Tang, T.H., Biosens. Bioelectron., 2015, vol. 64, pp. 392–403.CrossRefGoogle Scholar
  16. 16.
    Song, K.M., Lee, S., and Ban, C., Sensors, 2012, vol. 12, no. 1, pp. 612–631.CrossRefGoogle Scholar
  17. 17.
    Hasegawa, H., Savory, N., Abe, K., and Ikebukuro, K., Molecules, 2016, vol. 21, no. 4, p. 421.CrossRefGoogle Scholar
  18. 18.
    Mallikaratchy, P., Molecules, 2017, vol. 22, no. 2, p.215.CrossRefGoogle Scholar
  19. 19.
    Tuerk, C. and Gold, L., Science, 1990, vol. 249, pp. 505–510.CrossRefGoogle Scholar
  20. 20.
    Yuce, M., Ullah, N., and Budak, H., Analyst, 2015, vol. 140, no. 16, pp. 5379–5399.CrossRefGoogle Scholar
  21. 21.
    Jo, H. and Ban, C., Exp. Mol. Med., 2016, vol. 48. e230.CrossRefGoogle Scholar
  22. 22.
    Kim, Y.S., Raston, N.H., and Gu, M.B., Biosens. Bioelectron., 2016, vol. 76, pp. 2–19.CrossRefGoogle Scholar
  23. 23.
    Torshizi, R., Zeinoddini, M., Deldar, A.A., and Robatjazi, S.M., Int. J. Adv. Biotech. Res., 2016, vol. 7, no. 3, pp. 2361–2367.Google Scholar
  24. 24.
    McPherson, M.J., Moller, S.G., PCR. Oxford: Bios Scientific Publishers Ltd., 2000.Google Scholar
  25. 25.
    Rabbany, S.Y., Lane, W.J., Marganski, W.A., Kusterbeck, A.W., and Ligler, F.S., J. Immunol. Methods, 2000, vol. 246, pp. 69–77.CrossRefGoogle Scholar
  26. 26.
    Song, S., Wang, L., Li, J., Zhao, J., and Fan, C., Trend. Anal. Chem., 2008, 27, no. 2, pp. 108–117.CrossRefGoogle Scholar
  27. 27.
    Ehrentreich-Forster, E., Anal. Biochem., 2008, vol. 391, pp. 1793–1800.Google Scholar
  28. 28.
    Yu, Y., Cao, Q., Zhou, M., and Cui, H., Biosens. Bioelectron., 2013, vol. 43, pp. 137–142.CrossRefGoogle Scholar
  29. 29.
    Sabherwal, P., Shorie, M., Pathania, P., Shilpa C., Chaudhary, S., et al. Anal. Chem. 2014, vol. 86, no. 15, pp. 7200–7204.CrossRefGoogle Scholar
  30. 30.
    Sabherwal, P., Shorie, M., Bhalla, V., Pathania, P., and Suri, C.R., Chem. Commun., 2014, vol. 50, no. 9, pp. 1080–1082.CrossRefGoogle Scholar
  31. 31.
    Ho, M.Y., D,Souza, N., and Miqliorato, P., Anal. Chem., 2012, vol. 84, no. 10, pp. 4245–4247.CrossRefGoogle Scholar
  32. 32.
    Anderson, G.P. and Goldman, E.R., J. Immunol. Methods, 2008, vol. 339, no. 1, pp. 47–54.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Department of Bioscience and Biotechnology, Malek Ashtar University of TechnologyTehranIran

Personalised recommendations