Applied Biochemistry and Microbiology

, Volume 54, Issue 6, pp 689–694 | Cite as

Biofuel Cell Based on Bacteria of the Genus Gluconobacter as a Sensor for Express Analysis of Biochemical Oxygen Demand

  • S. V. Alferov
  • V. A. Arlyapov
  • V. A. Alferov
  • A. N. ReshetilovEmail author


The anode of a microbial fuel cell was used to determine the index of biochemical oxygen demand. The fuel cell was developed with an activated graphite electrode modified with polyvinyl alcohol containing N-vinylpyrrolidone. The combination of polyvinyl alcohol with N-vinylpyrrolidone was used to immobilize Gluconobacter oxydans bacteria. The application of this matrix made it possible to obtain a microbial fuel cell possessing a high sensitivity and a minimal time for a single measurement of the BOD5 index, which were 8.3 mV dm3/mg O2 and 30 min, respectively. The lower limit of the determined values of biochemical oxygen demand was 0.34 mg O2/dm3. The determination of the wastewater BOD5 indicated that these results agreed with the data of the standard method (the correlation coefficient was 0.99). The studied biosensor model exceeded the described analogs in such characteristics as the lower limit of detection and the minimal time for a single measurement.


biofuel cell biochemical oxygen demand mediator Gluconobacter oxydans 



  1. 1.
    ISO 5815-1:2003. Water Quality—Determination of Biochemical Oxygen Demand after N Days (BODn), Part 1: Dilution and Seeding Method with Allylthiourea Addition, 2003.Google Scholar
  2. 2.
    ISO 5815-2:2003. Water Quality—Determination of Biochemical Oxygen Demand after N Days (BODn), Part 2: Method for Undiluted Samples, 2003.Google Scholar
  3. 3.
    Jouanneau, S., Recoules, L., Durand, M.J., Bou-kabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., and Thouand, G., Water Res., 2014, vol. 49, pp. 62–82.CrossRefGoogle Scholar
  4. 4.
    Ponamoreva, O.N., Arlyapov, V.A, Alferov, V.A., and Reshetilov, A.N., Appl. Biochem. Microbiol., 2011, vol. 47, no. 1, pp. 1–11.CrossRefGoogle Scholar
  5. 5.
    Kashem, M.A., Suzuki, M., Kimoto, K., and Iribe, Y., Sens. Actuators, 2015, vol. 221, pp. 1594–1600.CrossRefGoogle Scholar
  6. 6.
    Karube, I., Mitsuda, S., and Suzuki, S., Biotechnol. Bioeng., 1977, vol. 19, no. 11, pp. 1727–1733.CrossRefGoogle Scholar
  7. 7.
    Karube, I. and Suzuki, S., Eur. Appl. Microbiol. Biotechnol., 1980, vol. 10, no. 3, pp. 235–243.CrossRefGoogle Scholar
  8. 8.
    Thurston, C.F., Bennetto, H.P., Mason, G., Roller, S.D., and Striling, J.L., J. Gen. Microbiol., 1985, vol. 131, pp. 1393–1401.Google Scholar
  9. 9.
    Gil, G.C., Chang, I.S., Kim, B.H., Kim, M., Jang, J.K., Park, H.S., and Kim, H.J., Biosens. Bioelectron., 2003, vol. 18, no. 4, pp. 327–334.CrossRefGoogle Scholar
  10. 10.
    Kim, B.H., Chang, I.S., Gil, G.C., Park, H.S., and Kim, H.J., Biotechnol. Lett., 2003, vol. 25, no. 7, pp. 541–545.CrossRefGoogle Scholar
  11. 11.
    Nakamura, H., Suzuki, K., Ishikuro, H., Kinoshita, S., Koizumi, R., Okuma, S., Gotoh, M., and Karube, I., Talanta, 2007, vol. 72, no. 1, pp. 210–216.CrossRefGoogle Scholar
  12. 12.
    Angelidaki, I., Biotechnol. Bioeng., 2011, vol. 108, no. 10, pp. 2339–2347.CrossRefGoogle Scholar
  13. 13.
    Peixoto, L., Min, B., Martins, G., Brito, A.G., Kroff, P., Parpot, P., Angelidaki, I., and Nogueira, R., Bioelectrochemistry, 2011, vol. 81, no. 2, pp. 99–103.CrossRefGoogle Scholar
  14. 14.
    Arlyapov, V.A., Yudina, N.Yu., Asulyan, L.D., Alferov, S.V., Alferov, V.A., and Reshetilov, A.N., Enzyme Microb. Technol., 2013, vol. 53, no. 4, pp. 257–262.CrossRefGoogle Scholar
  15. 15.
    Minaicheva, P.R., Alferov, S.V., Arlyapov, V.A., Alferov, V.A., and Reshetilov, A.N., Voda: Khim. Ekol., 2013, no. 1, pp. 42–49.Google Scholar
  16. 16.
    Timonov, A.M., Soros. Obrazovat. Zh., 2000, vol. 6, no. 8, pp. 69–75.Google Scholar
  17. 17.
    Lusta, K.A. and Reshetilov, A.N., Appl. Biochem. Microbiol., 1998, vol. 34, no. 4, pp. 307–320.Google Scholar
  18. 18.
    Arlyapov, V.A., Ponamoreva, O.N., Alferov, V.A., Rogova, T.V., Blokhin, I.V., Chepkova, I.F., and Reshetilov, A.N., Voda: Khim. Ekol., 2008, no. 3, pp. 23–30.Google Scholar
  19. 19.
    Reshetilov, A., Alferov, S., Tomashevskaya, L., and Ponamoreva, O., Electroanalysis, 2006, vol. 18, nos. 19–20, pp. 2030 – 2034.CrossRefGoogle Scholar
  20. 20.
    Wang, K., Liu, Y., and Chen, S., J. Power Sources, 2011, vol. 196, no. 1, pp. 164–168.CrossRefGoogle Scholar
  21. 21.
    Reshetilov, A., Iliasov, P.V., Donova, M.V., Dovbnya, D.V., Boronin, A.M., Leathers, T.D., and Greene, R.V., Biosens. Bioelectron., 1997, vol. 12, no. 3, pp. 241– 247.CrossRefGoogle Scholar
  22. 22.
    Modin, O. and Wilen, B.M., Water Res., 2012, vol. 46, no. 18, pp. 6113–6120.CrossRefGoogle Scholar
  23. 23.
    Alferov, S.V., Minaicheva, P.R., Arlyapov, V.A., Asulyan, L.D., Alferov, V.A., Ponamoreva, O.N., and Reshetilov, A.N., Appl. Biochem. Microbiol., 2014, vol. 50, no. 6, pp. 637–643.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. V. Alferov
    • 1
  • V. A. Arlyapov
    • 1
  • V. A. Alferov
    • 1
  • A. N. Reshetilov
    • 1
    • 2
    Email author
  1. 1.Tula State UniversityTulaRussia
  2. 2.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of SciencesPushchinoRussia

Personalised recommendations