Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 436–441 | Cite as

Highly Sensitive Immunochromatographic Assay for Qualitative and Quantitative Control of Beta-Agonist Ractopamine in Foods

  • E. A. Zvereva
  • N. A. Shpakova
  • A. V. Zherdev
  • C. Xu
  • B. B. Dzantiev
Article
  • 27 Downloads

Abstract

An immunochromatographic method has been developed for the determination of ractopamine, a low-molecular, nonsteroidal growth regulator controlled in food due to toxicity. The developed analysis was characterized by an instrument detection limit of 0.05 ng/mL, a working range of 0.07‒0.28 ng/mL, and a visual detection limit of 0.5 ng/mL, which meets the requirements of sanitary and hygienic control. It is shown that the developed immunochromatographic test systems can be used to test meat products.

Keywords

immunochromatographic analysis ractopamine food safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, D.J., J. Animal Sci., 1998, vol. 76, no. 1, pp. 173–194.CrossRefGoogle Scholar
  2. 2.
    Moreno, L. and Lanusse, C., in New Aspects of Meat Quality, Woodhead Publishing, 2017, ch. 24, pp. 605–627.CrossRefGoogle Scholar
  3. 3.
    Niño, A.M.M., Granja, R.H.M.M., Wanschel, A.C.B.A., and Salerno, A.G., Food Control, 2015, vol. 72, part B, pp. 289–292.CrossRefGoogle Scholar
  4. 4.
    Centner, T.J., Alvey, J.C., and Stelzleni, A.M., J. Anim. Sci., 2014, vol. 92, no. 9, pp. 4234–4240.CrossRefPubMedGoogle Scholar
  5. 5.
    Qiang, Z., Shentu, F., Wang, B., Wang, J., Chang, J., and Shen, J., J. Agric. Food Chem., 2007, vol. 55, no. 11, pp. 4319–4326.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang, J.P., Li, X.W., Zhang, W., and Shen, J.Z., Chromatografia, 2006, vol. 64, no. 9, pp. 613–617.CrossRefGoogle Scholar
  7. 7.
    Shao, B., Jia, X., Zhang, J., Meng, J., Wu, Y., Duan, H., and Tu, X., Food Chem., 2009, vol. 114, no. 3, pp. 1115–1121.CrossRefGoogle Scholar
  8. 8.
    Dong, Y., Xia, X., Wang, X., Ding, S., Li, X., Zhang, S., Jiang, H., Liu, J., Li, J., and Feng, Z., Food Chem., 2011, vol. 127, no. 1, pp. 327–332.CrossRefGoogle Scholar
  9. 9.
    Amelin, V.G., Korolev, D.S., and Tret’yakov, A.V., J. Anal. Chem., 2015, vol. 70, no. 4, pp. 419–423.CrossRefGoogle Scholar
  10. 10.
    Zhang, W., Wang, P., and Su, X., Trends Anal. Chem., 2016, vol. 85, part C, pp. 1–16.CrossRefGoogle Scholar
  11. 11.
    Khaemba, G.W., Tochi, B.N., Mukunzi, D., Joel, I., Guo, L., Suryobrobowo, S., Song, S., Kuang, H., and Xu, C., Food Agric. Immunol., 2016, vol. 27, pp. 111–127.CrossRefGoogle Scholar
  12. 12.
    Ren, X., Zhang, F., Chen, F., and Yang, T., Food Agric. Immunol., 2009, vol. 20, no. 4, pp. 333–344.CrossRefGoogle Scholar
  13. 13.
    Dong, J.X., Li, Z.F., Lei, H.T., Sun, Y.M., Ducancel, F., Xu, Z.L., Boulain, J.C., Yang, J.Y., Shen, Y.D., and Wang, H., Anal. Chim. Acta, 2012, vol. 736, pp. 85–91.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang, Y., Wang, F., Fang, L., Wang, S., and Fang, G., J. Biomed. Biotechnol., 2009, vol. 2009, p. 579175.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zvereva, E.A., Shpakova, N.A., Zherdev, A.V., Liu, L., Xu, C., Eremin, S.A., and Dzantiev, B.B., Appl. Biochem. Microbiol., 2016, vol. 52, no. 6, pp. 673–678.CrossRefGoogle Scholar
  16. 16.
    Gao, H., Han, J., Yang, S., Wang, Z., Wang, L., and Fu, Z., Anal. Chim. Acta, 2014, vol. 839, pp. 91–96.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang, W., Su, X., Ouyang, H., Wang, L., and Fu, Z., Anal. Chim. Acta, 2016, vol. 917, pp. 79–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Gu, H., Liu, L., Song, S., Kuang, H., and Xu, C., Food Agric. Immunol., 2016, vol. 27, no. 4, pp. 471–483.CrossRefGoogle Scholar
  19. 19.
    Li, C., Li, J., Jiang, W., Zhang, S., Shen, J., Wen, K., and Wang, Z., J. Agric. Food Chem., 2015, vol. 63, no. 48, pp. 10556–10561.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu, R., Liu, L., Song, S., Cui, G., Zheng, Q., Kuang, H., and Xu, C., Food Agric. Immunol., 2017, vol. 28, no. 4, pp. 625–638.CrossRefGoogle Scholar
  21. 21.
    Petrakova, A.V., Urusov, A.E., Gubaydullina, M.K., Bartosh, A.V., Zherdev, A.V., and Dzantiev, B.B., Talanta, 2017, vol. 175, pp. 77–81.CrossRefPubMedGoogle Scholar
  22. 22.
    Urusov, A.E., Petrakova, A.V., Zherdev, A.V., and Dzantiev, B.B., Biosens. Bioelectron., 2016, vol. 86, pp. 575–579.CrossRefPubMedGoogle Scholar
  23. 23.
    Urusov, A.E., Petrakova, A.V., Gubaydullina, M.K., Zherdev, A.V., Eremin, S.A., Kong, D., Liu, L., Xu, C., and Dzantiev, B.B., Biotechnol. Lett., 2017, vol. 39, no. 5, pp. 751–758.CrossRefPubMedGoogle Scholar
  24. 24.
    Urusov, A., Zherdev, A., and Dzantiev, B., Microchim. Acta, 2014, vol. 181, nos. 15–16, pp. 1939–1946.CrossRefGoogle Scholar
  25. 25.
    Uhrovcík, J., Talanta, 2014, vol. 119, pp. 178–180.CrossRefPubMedGoogle Scholar
  26. 26.
    Frens, G., Nature Phys. Sci., 1973, vol. 241, pp. 20–23.CrossRefGoogle Scholar
  27. 27.
    Kurganov, B.I., Lobanov, A.V., Borisov, I.A., and Reshetilov, A.N., Anal. Chim. Acta, 2001, vol. 427, no. 1, pp. 11–19.CrossRefGoogle Scholar
  28. 28.
    Wong, R. and Tse, H., Lateral Flow Immunoassay, New York: Humana Press, 2009.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. A. Zvereva
    • 1
  • N. A. Shpakova
    • 1
  • A. V. Zherdev
    • 1
  • C. Xu
    • 2
  • B. B. Dzantiev
    • 1
  1. 1.Bach Institute of Biochemistry, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxi, JiangsuChina

Personalised recommendations