Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 387–395 | Cite as

Cloning, Isolation, and Properties of a New Homologous Exoarabinase from the Penicillium canescens Fungus

  • M. V. SemenovaEmail author
  • P. V. Volkov
  • A. M. Rozhkova
  • I. N. Zorov
  • A. P. Sinitsyn


A novel exo-arabinase (GH93, exo-ABN) enzyme produced by the ascomycete Penicillium canescens has been studied. Cloning of the abn1 gene coding for exo-ABN into the recipient P. canescens strain RN3-11-7 yielded recombinant producing strains characterized by a high yield of extracellular exo- ABN production (20–30% of the total amount of extracellular protein). Chromatographic purification yielded a homogenous exo-ABN with a molecular weight of 47 kDa, as shown by SDS-PAGE. The enzyme showed high specific activity towards linear arabinan (117 U/mg) and low specific activity towards branched arabinan and arabinoxylan (4–5 U/mg) and para-nitrophenyl-α-L-arabinofuranoside (0.3 U/mg), whereas arabinogalactan and para-nitrophenyl-α-L-arabinopyranoside, the substrates that contained the pyranose form of arabinose, were not hydrolyzed. Arabinohexaose was the major product of linear arabinan hydrolysis. Exo-ABN had a pH optimum at 5.0 and a temperature optimum at 60°C. The enzyme was stable in a broad pH range (4.0–7.0) and upon heating to 50°C during 180 min. Extensive hydrolysis of linear and branched arabinans by exo- and endo-arabinase mixtures, arabinofuranosidase, and arabinofuran-arabinoxylan hydrolase has been performed. The degree of substrate conversion amounted to 67 and 83% of the maximal possible value, respectively.


exo-arabinase arabinan arabinohexaose Penicillium canescens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakamoto, T. and Thibault, J.F., Appl. Environ. Microbiol., 2001, vol. 67, pp. 3319–3321.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Proctor, M.R., Taylor, E.J., Nurizzo, D., Turkenburg, J.P., Lloyd, R.M., Vardakou, M., Davies, G.J., and Gilbert, H.J., Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 2697–2702.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    McKie, V.A., Black, G.W., and Willward-Sadler, S.J., Biochem. J., 1997, vol. 323, pp. 547–555.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wong, D.W.S., Chan, V.J., and Batt, S.B., Appl. Microbiol. Biotechnol., 2008, vol. 79, pp. 941–950.CrossRefPubMedGoogle Scholar
  5. 5.
    Kuhnel, S., Hinz, S.W.A., Pouvreau, L., Wery, J., Schools, H.A., and Gruppen, H., Biores. Technol., 2010, vol. 101, pp. 8300–8307.CrossRefGoogle Scholar
  6. 6.
    Kaji, A. and Shimokawa, K., Agric. Biol. Chem., 1984, vol. 48, pp. 67–72.Google Scholar
  7. 7.
    Whitaker, J.R., Voragen, A.G., and Wong, D.W.S., Handbook of Food Enzymology, New York; Basel: Marcel Dekker, 2003.Google Scholar
  8. 8.
    Hemicellulose and Hemicellulases, Coughlan, M.P. and Hazlewood, G.P., Eds., London and Chapel Hill: Portland Press Research Monograph, 1993.Google Scholar
  9. 9.
    Rubtsova, E.A., Bushina, E.V., Rozhkova, A.M., Korotkova, O.G., Nemashkalov, V.A., Koshelev, A.V., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 5, pp. 591–599.CrossRefGoogle Scholar
  10. 10.
    Matys, V.Yu., Bubnova, T.V., Koshelev, A.V., Vel’kov, V.V., Okunev, O.N., Bravova, G.B., Shishkova, E.A., Semenova, M.V., and Sinitsyn, A.P., in Mikrobnye biokatalizatory i perspektivy razvitiya fermentnykh tekhnologii v pererabatyvayushchikh otraslyakh APK (Microbial Biocatalysts and Prospects for the Development of Enzyme Technologies in the Processing Industries of the Agro-Industrial Complex), Moscow: Pishchepromizdat, 2004.Google Scholar
  11. 11.
    Sinitsyna, O.A., Bukhtoyarov, F.E., Gusakov, A.V., Okunev, O.N., Bekkarevich, A.O., Vinetskii, Yu.P., and Sinitsyn, A.P., Biochemistry (Moscow), 2003, vol. 68, no. 11, pp. 1200–1209.CrossRefGoogle Scholar
  12. 12.
    Sinitsyn, A.P. and Rozhkova, A.M., Penicillium canescens Host as a Platform for Development of a New Recombinant Strain Producers of Carbohydrases, Microbiology Monographs, Berlin, Heidelberg: Springer-Verlag, 2015.Google Scholar
  13. 13.
    Sanger, F., Nicklen, S., and Chase, A.R., Proc. Natl. Acid. Sci. U.S.A., 1977, vol. 74, no. 12, pp. 5463–5467.CrossRefGoogle Scholar
  14. 14.
    Aleksenko, A., Makarova, N., Nikolaev, I., and Clutterbuck, A., Curr. Genet., 1995, vol. 28, pp. 474–478.CrossRefPubMedGoogle Scholar
  15. 15.
    Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Metody izucheniya i svoistva tsellyuloliticheskikh fermentov (Methods of Study and Properties of Cellulolytic Enzymes), Itogi nauki i tekhniki, Ser. Biotekhnol., Moscow: VINITI, 1990, vol. 25, p. 148.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. V. Semenova
    • 1
    Email author
  • P. V. Volkov
    • 1
  • A. M. Rozhkova
    • 1
  • I. N. Zorov
    • 1
    • 2
  • A. P. Sinitsyn
    • 1
    • 2
  1. 1.Fundamentals of Biotechnology Federal Research CenterRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations