Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 352–360 | Cite as

Phytases and the Prospects for Their Application (Review)

  • N. N. Gessler
  • E. G. Serdyuk
  • E. P. Isakova
  • Y. I. Deryabina
Article
  • 49 Downloads

Abstract

Phytases from plants and microorganisms release phospates from poorly soluble phytates, making the phospates more accessible. In this review, some features and biochemical properties of phytases, as well as the areas and prospects for their use, are under discussion. The introduction of phytases into the fodder for food-producing animals increases the product yield without any additional expenses for mineral phosphates. The presense of phytases in the soils reduces the risk of water eutrophication.

Keywords

phytate phytases inositol-phosphates producers of phytases application of phytases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maga, J.A., J. Agric. Food Chem., 1982, vol. 30, no. 1, pp. 1–9.CrossRefGoogle Scholar
  2. 2.
    Raboy, V., Phytochemistry, 2003, vol. 64, no. 6, pp. 1033–1043.PubMedCrossRefGoogle Scholar
  3. 3.
    Akhmetova, A.I., Mukhametzyanova, A.D., and Sharipova, M.R., Uch. Zap. Kazan. Univ., 2012, vol. 154, no. 2, pp. 103–110.Google Scholar
  4. 4.
    Azeke, M.A., Egielewa, S.J., Eigbogbo, M.U., and Ihimire, I.G., J. Food Sci. Technol., 2011, vol. 48, no. 6, pp. 724–729.PubMedCrossRefGoogle Scholar
  5. 5.
    Reddy, N., Sathe, S., and Salunkhe, D., Adv. Food Res., 1982, vol. 28, no. 1, pp. 1–92.PubMedGoogle Scholar
  6. 6.
    Wodzinski, R.J. and Ullah, A.H.J., Adv. Appl. Microbiol., 1996, vol. 42, no. 3, pp. 263–302.PubMedCrossRefGoogle Scholar
  7. 7.
    Prasad, C., Mandal, A., Gowda, N., Sharma, K., Pattanaik, A., Tyagi, P., et al., Curr. Sci., 2015, vol. 108, no. 7, pp. 1315–1319.Google Scholar
  8. 8.
    Mitchell, D.B., Vogel, K., Weimann, B.J., Pasamontes, L., and van Loon, A.P.G.M., Arch. Microbiol., 1997, vol. 143, no. 1, pp. 245–252.CrossRefGoogle Scholar
  9. 9.
    Troesch, B., Jing, H., Laillou, A., and Fowler, A., Food Nutr. Bull., 2013, vol. 34, suppl. 2, pp. 90–101.CrossRefGoogle Scholar
  10. 10.
    Grases, F., Prieto, R.M., and Costa-Bauza, A., in Clinical Aspects of Natural and Added Phosphorus in Foods, Nutrition and Health, Gutiérrez, O.M., Kalantar-Zadeh, K., and Mehrotra, R., New York: Springer Science+Business Media, 2017, pp. 175–183.Google Scholar
  11. 11.
    Carpenter, S.R., Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 29, pp. 10002–10005.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kumar, A., Chanderman, A., Makolomakwe, M., Perumal, K., and Singh, S., Critical Rev. Environ. Sci. Technol., 2016, vol. 46, no. 6, pp. 556–591.CrossRefGoogle Scholar
  13. 13.
    Balaban, N.P., Suleimanova, A.D., Valeeva, L.R., Chastukhina, I.B., Rudakova, N.L., Sharipova, M.R., et al., Amer. J. Mol. Biol., 2017, vol. 7, no. 1, pp. 11–29.CrossRefGoogle Scholar
  14. 14.
    Suzuki, U., Yoshimura, K., and Takaishi, M., Bull. College Agricult. German. Tokyo Imperial Univ., 1907, vol. 7, no. 4, pp. 503–512.Google Scholar
  15. 15.
    Dox, A.W. and Golden, R., J. Biol. Chem., 1911, vol. 10, no. 1, pp. 183–186.Google Scholar
  16. 16.
    Casida, L.E., Soil Sci., 1959, vol. 87, no. 2, pp. 305–310.CrossRefGoogle Scholar
  17. 17.
    Shieh, T.R. and Ware, J.H., Appl. Microbiol., 1968, vol. 169, no. 9, pp. 1348–1351.Google Scholar
  18. 18.
    Gargova, S., Roshkova, Z., and Vancheva, G., Biotechnol. Techniques, 1997, vol. 11, no. 4, pp. 221–224.CrossRefGoogle Scholar
  19. 19.
    Vihnudas, J., Jojula, M., and Singaracharya, M.A., Curr. World Environ., 2012, vol. 7, no. 1, pp. 187–190.CrossRefGoogle Scholar
  20. 20.
    Singh, B. and Satyanarayana, T., African J. Biotechnol., 2012, vol. 11, no. 59, pp. 12314–12324.Google Scholar
  21. 21.
    Olstorpe, M., Schnurer, J., and Passoth, V., EMS Yeast Res., 2009, vol. 9, no. 3, pp. 478–488.CrossRefGoogle Scholar
  22. 22.
    Azeke, M.A., Greiner, R., and Jany, K.-D., J. Food Biochem., 2011, vol. 35, no. 1, pp. 213–227.CrossRefGoogle Scholar
  23. 23.
    Kumar, V., Singh, D., Sangwan, P., and Gill, P.K., Applied Environmental Biotechnology: Present Scenario and Future Trends, Kaushik, G., Ed., India: Springer, 2015, pp. 97–114.Google Scholar
  24. 24.
    Greppi, A., Krych, L., Costantini, A., Rantsiou, K., Hounhouigan, D.J., Arneborg, N., et al., Int. J. Food Microbiol., 2015, vol. 205, no. 1, pp. 81–89.PubMedCrossRefGoogle Scholar
  25. 25.
    Mukhametzyanova, A.D., Akhmetova, A.I., and Sharipova, M.R., Microbiology (Moscow), 2012, vol. 81, no. 3, pp. 267–275.CrossRefGoogle Scholar
  26. 26.
    Konietzny, U. and Greiner, R., Braz. J. Microbiol., 2004, vol. 35, no. 1, pp. 12–18.CrossRefGoogle Scholar
  27. 27.
    Suleimanova, A., Troshagina, D., and Sharipova, M., Res. J. Pharm. Biol. Chem. Sci., 2016, vol. 7, no. 5, pp. 1570–1577.Google Scholar
  28. 28.
    Bajaj, B.K. and Wani, M.A., Biocatal. Biotransform., 2015, vol. 33, no. 3, pp. 141–149.CrossRefGoogle Scholar
  29. 29.
    De Angelis, M., Gallo, G., Corbo, M.R., McSweeney, P.L., Faccia, M., Giovine, M., et al., Int. J. Food Microbiol., 2003, vol. 87, no. 3, pp. 259–270.PubMedCrossRefGoogle Scholar
  30. 30.
    Haros, M., Bielecka, M., Honke, J., and Sanz, Y., Pol. J. Food Nutr. Sci., 2008, vol. 58, no. 1, pp. 33–40.Google Scholar
  31. 31.
    Singh, P., Kumar, V., and Agrawal, S., Int. J. Microbiol., 2014, vol. 2014, article ID 426483. doi 10.1155/2014/426483Google Scholar
  32. 32.
    Idriss, E.E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., et al., Arch. Microbiol., 2002, vol. 148, no. 7, pp. 2097–2109.CrossRefGoogle Scholar
  33. 33.
    Gulati, H.K., Chadha, B.S., and Saini, H.S., Microbiol. Biotechnol., 2007, vol. 34, no. 1, pp. 91–98.CrossRefGoogle Scholar
  34. 34.
    Suleimanova, A.D., Danilova, Yu.V., Grainer, R., and Sharapova, M.R., Bioorg. Khim., 2013, vol. 39, no. 4, pp. 424–429.PubMedGoogle Scholar
  35. 35.
    Li, M., Osaki, M., Honma, M., and Tadano, T., Soil Sci. Plant Nutr., 1997, vol. 43, no. 2, pp. 179–190.CrossRefGoogle Scholar
  36. 36.
    George, T.S., French, A.S., Brown, L.K., Karley, A.J., White, P.J., Ramsay, L., et al., Physiologia Plantarum, 2014, vol. 151, no. 3, pp. 243–256.PubMedCrossRefGoogle Scholar
  37. 37.
    Phillippy, B.Q. and Wyatt, C.J., J. Food Sci., 2001, vol. 66, no. 4, pp. 535–539.CrossRefGoogle Scholar
  38. 38.
    Viveros, A., Centeno, C., Brenes, A., Canales, R., and Lozano, A., J. Agric. Food Chem., 2000, vol. 48, no. 9, pp. 4009–4013.PubMedCrossRefGoogle Scholar
  39. 39.
    Bekalu, Z.E., Madsen, C.K., Dionisio, G., and Brinch-Pedersen, H., PLoS One, 2017, vol. 12, no. 5. e0176838. doi 10.1371/journal.pone.0176838PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Higgins, N.F. and Crittenden, P.D., New Phytol., 2015, vol. 208, no. 2, pp. 544–554.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Iqbal, T.H., Lewis, K.O., and Cooper, B.T., Gut, 1994, vol. 35, no. 9, pp. 1233–1236.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ellestad, L.E., Angel, R., and Soares, J.H., Jr., Fish Physiol. Biochem., 2002, vol. 26, no. 2, pp. 259–273.CrossRefGoogle Scholar
  43. 43.
    McCollum, E.V. and Hart, E.B., J. Biol. Chem., 1908, vol. 4, no. 6, pp. 497–500.Google Scholar
  44. 44.
    Wyss, M., Brugger, R., Kronenberger, A., Rémy, R., Fimbel, R., Oesterhelt, G., et al., Appl. Environ. Microbiol., 1999, vol. 65, no. 2, pp. 367–373.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Puhl, A.A., Greiner, R., and Selinger, L.B., Int. J. Biochem. Cell Biol., 2008, vol. 40, no. 10, pp. 2053–2064.PubMedCrossRefGoogle Scholar
  46. 46.
    Puhl, A.A., Gruninger, R.J., Greiner, R., Janzen, T.W., Mosimann, S.C., and Selinger, L.B., Protein Sci., 2007, vol. 16, no. 7, pp. 1368–1378.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Puhl, A.A., Greiner, R., and Selinger, L.B., Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 1, pp. 95–103.PubMedCrossRefGoogle Scholar
  48. 48.
    Gruninger, R.J., Dobing, S., Smith, A.D., Bruder, L.M., Selinger, L.B., Wieden, H.J., et al., J. Biol. Chem., 2012, vol. 287, no. 13, pp. 9722–9730.PubMedCrossRefGoogle Scholar
  49. 49.
    Rigden, D.J., Biochem. J., 2008, vol. 409, no. 2, pp. 333–348.PubMedCrossRefGoogle Scholar
  50. 50.
    Shivange, A.D., Schwaneberg, U., and Roccatano, D., Biopolymers, 2010, vol. 93, no. 11, pp. 994–1002.PubMedCrossRefGoogle Scholar
  51. 51.
    Gontia-Mishra, I., Singh, V.K., Tripathi, N., Sasidharan, S., and Tiwari, S., Biologia, 2014, vol. 69, no. 10, pp. 1283–1294.CrossRefGoogle Scholar
  52. 52.
    Mullaney, E.J. and Ullah, A.H.J., in Inositol Phosphates: Linking Agriculture and the Environment, Turner, B.L., Richardson, A.E., and Mullaney, E.J., Eds., USDA, New Orleans, USA: CABI, 2007, pp. 97–110.Google Scholar
  53. 53.
    Oh, B.-C., Choi, W.-C., Park, S., Kim, Y.-O., and Oh, T.-K., Appl. Microbiol. Biotechnol., 2004, vol. 63, no. 4, pp. 362–372.PubMedCrossRefGoogle Scholar
  54. 54.
    Gontia-Mishra, I. and Tiwaris, S., Food Technol. Biotechnol., 2013, vol. 51, no. 3, pp. 313–326.Google Scholar
  55. 55.
    Cheng, C., Wong, K.B., and Lim, B.L., Protein Pept. Lett., 2007, vol. 14, no. 2, pp. 175–183.PubMedCrossRefGoogle Scholar
  56. 56.
    Ha, N.C., Oh, B.-C., Shin, S., Kim, H.-J., Oh, T.-K., Kim, Y.O., et al., Nat. Struct. Mol. Biol., 2000, vol. 7, no. 1, pp. 147–153.Google Scholar
  57. 57.
    Tye, A.J., Siu, F.K., Leung, T.Y., and Lim, B.L., Appl. Microbiol. Biotechnol., 2002, vol. 59, nos. 2–3, pp. 190–197.PubMedGoogle Scholar
  58. 58.
    Nassiri, M. and Ariannejad, H., Rep. Biochem. Mol. Biol., 2015, vol. 4, no. 1, pp. 10–18.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Shin, S., Ha, N.-C., Oh, B.-C., Oh, T.-K., and Oh, B.-H., Structure, 2001, vol. 9, no. 9, pp. 851–858.PubMedCrossRefGoogle Scholar
  60. 60.
    Balaban, N.P., Suleimanova, A.D., Valeeva, L.R., Shakirov, E.V., and Sharipova, M.R., Biochemistry (Moscow), 2016, vol. 81, no. 8, pp. 785–793.CrossRefGoogle Scholar
  61. 61.
    Mukhametzyanova, A.D., Marenova, I.O., and Sharipova, M.R., Microbiology (Moscow), 2013, vol. 82, no. 1, pp. 52–58.CrossRefGoogle Scholar
  62. 62.
    Kuang, R., Chan, K.-H., Yeung, E., and Lim, B.L., Plant Physiol., 2009, vol. 151, no. 1, pp. 199–209.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Schenk, G., Ge, Y., Carrington, L.E., Wynne, C.J., Searle, I.R., Carroll, B., et al., Arch. Biochem. Biophys., 1999, vol. 370, no. 2, pp. 183–189.PubMedCrossRefGoogle Scholar
  64. 64.
    Li, D., Zhu, H., Liu, K., Liu, X., Leggewie, G., Udvardi, M., et al., J. Biol. Chem., 2002, vol. 277, no. 31, pp. 27772–27781.PubMedCrossRefGoogle Scholar
  65. 65.
    del Pozo, J.C., Allona, I., Rubio, V., Leyva, A., de la Peña, A., Aragoncillo, C., et al., Plant J., 1999, vol. 19, no. 5, pp. 579–589.PubMedCrossRefGoogle Scholar
  66. 66.
    Bozzo, G.G., Raghothama, K.G., and Plaxton, W.C., Eur. J. Biochem., 2002, vol. 269, no. 24, pp. 6278–6286.PubMedCrossRefGoogle Scholar
  67. 67.
    Reddy, C.S., Kim, K.M., James, D., Varakumar, P., and Reddy, M.K., Acta Physiol. Plant., 2017, vol. 39, no. 2, pp. 54–61.CrossRefGoogle Scholar
  68. 68.
    Gruninger, R.J., Thibault, J., Capeness, M.J., Till, R., Mosimann, S.C., Sockett, R.E., Selinger, B.L., and Lovering, A.L., PLoS One, 2014, vol. 9, no. 4. e94403.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kalsi, H.K., Singh, R., Dhaliwal, H.S., and Kumar, V., 3 Biotech., 2016, vol. 6, no. 1, pp. 1–13.CrossRefGoogle Scholar
  70. 70.
    Gupta, R.K., Gangoliya, S.S., and Singh, N.K., Biotechnol. Bioproc. Eng., 2014, vol. 19, no. 6, pp. 996–1004.CrossRefGoogle Scholar
  71. 71.
    Fiske, C.H. and Subbarow, Y., J. Biol. Chem., 1925, vol. 66, no. 2, pp. 375–400.Google Scholar
  72. 72.
    Qvirist, L., Carlsson, N.-G., and Andlid, T., J. Biol. Methods, 2015, vol. 2, no. 1. e16. doi 10.14440/ jbm.2015.58CrossRefGoogle Scholar
  73. 73.
    Suleimanova, A.D., Toimentseva, A.A., Mikhailova, E.O., and Sharipova, M.R., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 20, pp. 188–190.Google Scholar
  74. 74.
    Prestwich, S.A. and Bolton, T.B., Biochem. J., 1991, vol. 274, no. 3, pp. 663–672.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tran, T.T., Hatti-Kaul, R., Dalsgaard, S., and Yu, S., Anal. Biochem., 2011, vol. 410, no. 2, pp. 177–184.PubMedCrossRefGoogle Scholar
  76. 76.
    Shivange, A.V. and Schwaneberg, U., in Directed Enzyme Evolution: Advances and Application, Alcade, M., Ed., Springer Int. Publ., 2017, pp. 145–172.Google Scholar
  77. 77.
    Rebello, S., Jose, L., Sindhu, R., and Aneesh, E.M., Appl. Microbiol. Biotechnol., 2017, vol. 101, no. 7, pp. 2677–2689.PubMedCrossRefGoogle Scholar
  78. 78.
    Kaur, R., Saxena, A., Sangwan, P., Yadav, A.N., Kumar, V., and Dhaliwal, H.C., Nusantara Biosci., 2017, vol. 9, no. 1, pp. 68–76.CrossRefGoogle Scholar
  79. 79.
    Tan, H., Wu, X., Xie, L., Huang, Z., Peng, W., and Gan, B., Appl. Microbiol. Biotechnol., 2016, vol. 100, no. 5, pp. 2225–2241.PubMedCrossRefGoogle Scholar
  80. 80.
    Lei, X.G. and Stahl, C.H., Appl. Microbiol. Biotechnol., 2001, vol. 57, no. 4, pp. 474–481.PubMedCrossRefGoogle Scholar
  81. 81.
    Farhat-Khemakhem, A., Ali, M.B., Boukhris, I., Khemakhem, B., Maguin, E., and Bejar, S., Int. J. Biol. Macromol., 2013, vol. 54, no. 1, pp. 9–15.PubMedCrossRefGoogle Scholar
  82. 82.
    Tan, H., Miao, R., Liu, T., Cao, X., Wu, X., Xie, L., et al., J. Microbiol. Biotechnol., 2016, vol. 26, no. 10, pp. 1717–1722.PubMedCrossRefGoogle Scholar
  83. 83.
    Ni, Y. and Chen, R., Biotechnol. Lett., 2009, vol. 31, no. 11, pp. 1661–1670.PubMedCrossRefGoogle Scholar
  84. 84.
    Tran, T.T., Mamo, G., Mattiasson, B., and Hatti-Kaul, R., J. Ind. Microbiol. Biotechnol., 2010, no. 3, pp. 279–287.CrossRefGoogle Scholar
  85. 85.
    Kumar, V., Sangwan, P., Verma, A.K., and Agrawal, S., Appl. Biochem. Biotechnol., 2014, vol. 173, no. 2, pp. 646–659.PubMedCrossRefGoogle Scholar
  86. 86.
    Guerrero-Olazarán, M., Rodríguez-Blanco, L., Carreon-Treviño, J.G., Gallegós-López, J.A., and Viader-Salvadó, J.M., Appl. Environ. Microbiol., 2010, vol. 76, no. 16, pp. 5601–5608.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Niu, C., Luo, H., Shi, P., Huang, H., Wang, Y., Yang, P., et al., Appl. Environ. Microbiol., 2016, vol. 82, no. 4, pp. 1004–1014.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Roy, M.P., Mazumdar, D., Dutta, S., Saha, S.P., and Ghosh, S., PLoS One, 2016, vol. 11. e0145745.CrossRefGoogle Scholar
  89. 89.
    Maurya, A.K., Parashar, D., and Satyanarayana, T., Int. J. Biol. Macromol., 2016, vol. 94, Pt A, pp. 36–44.PubMedCrossRefGoogle Scholar
  90. 90.
    Onem, H. and Nadaroglu, H., J. Food Nutr. Res., 2014, vol. 2, no. 12, pp. 938–945.CrossRefGoogle Scholar
  91. 91.
    Onem, H., Cicek, S., and Nadaroglu, H., J. Food, 2016, vol. 14, no. 1, pp. 74–83.Google Scholar
  92. 92.
    Cho, E.-A., Kim, E.-J., and Pan, J.-G., Enzym. Microb. Technol., 2011, vol. 49, no. 1, pp. 66–71.CrossRefGoogle Scholar
  93. 93.
    Cheng, N., Chen, P., Lei, W., Feng, M., and Wang, C., Aquaculture Res., 2016, vol. 47, no. 12, pp. 3952–3963.CrossRefGoogle Scholar
  94. 94.
    Ushasree, M.V., Vidya, J., and Pandey, A., in Current Developments in Biotechnology and Bioengineering, Pandey, A., Negi, S., and Socco, N.C., Eds., Elsevier, 2017, vol. 8, pp. 309–332.CrossRefGoogle Scholar
  95. 95.
    Partridzh, G., Kombikorma, 2015, no. 5, pp. 75–76.Google Scholar
  96. 96.
    Gorneev, A., Tsenovik, 2014, no. 2, pp. 6–12.Google Scholar
  97. 97.
    Tokar’, V., Fainov, A., Geinel’, V., and Panin, A., Svinovodstvo, 2015, no. 2, pp. 47–48.Google Scholar
  98. 98.
    Tripathi, P., Garg, S., Panwar, D., Panwar, D., Kaira, G.S., Kumar, R., et al., Waste Biomass Valorization, 2017, vol. 8, no. 4, pp. 1105–1119.CrossRefGoogle Scholar
  99. 99.
    Kumari, A., Satyanarayana, T., and Singh, B., Appl. Biochem. Biotechnol., 2016, vol. 178, no. 1, pp. 197–210.PubMedCrossRefGoogle Scholar
  100. 100.
    Singh, B. and Satyanarayana, T., Appl. Biochem. Biotechnol., 2006, vol. 133, no. 3, pp. 239–249.PubMedCrossRefGoogle Scholar
  101. 101.
    Golovan, S.P., Hayes, M.A., Phillips, J.P., and Forsberg, C.W., Nature Biotechnol., 2001, vol. 19, no. 5, pp. 429–433.CrossRefGoogle Scholar
  102. 102.
    Ma, X.-F., Tudor, S., Butler, T., Ge, Y., Xi, Y., Bouton, J., Harrison, M., and Wang, Z.-Y., Mol. Breed., 2012, vol. 30, no. 1, pp. 377–391.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang, Y., Ye, X., Ding, G., and Xu, F., PLoS One, 2013, vol. 8, no. 4, pp. 1–9.CrossRefGoogle Scholar
  104. 104.
    Georg, T.S., Hadobas, P.A., and Simpson, R.J., Plant, Cell Environ., 2004, vol. 27, no. 11, pp. 1351–1361.CrossRefGoogle Scholar
  105. 105.
    Belgaroui, N., Berthomieu, P., Rouached, H., and Hanin, M., Plant Biotechnol. J., 2016, vol. 14, no. 9, pp. 1914–1924.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mohsin, S., Maqbool., A., Ashraf, M., and Malik, K.A., Mol. Biotechnol., 2017, vol. 59, no. 8, pp. 334–342.PubMedCrossRefGoogle Scholar
  107. 107.
    Ali, N., Paul, S., Gayen, D., Sarkar, S.N., Datta, K., and Datta, S.K., PLoS One, 2013, vol. 8. e68161.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Suleimanova, A.D., Beinhauer, A., Valeeva, L.R., Chastukhina, I.B., Balaban, N.P., Shakirov, E.V., et al., Appl. Environ. Microbiol., 2015, vol. 81, no. 19, pp. 6790–6799.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liu, B.L., Jong, C.M., and Tzeng, Y.M., Enzyme Microb. Technol., 1998, vol. 25, no. 5, pp. 517–521.Google Scholar
  110. 110.
    Shah, P.C., Kumar, V.R., Dastager, S.G., and Khire, J.M., AMB Express, 2017, vol. 7, no. 66. doi 10.1186/s13568-017-0370-9Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • N. N. Gessler
    • 1
  • E. G. Serdyuk
    • 2
  • E. P. Isakova
    • 1
  • Y. I. Deryabina
    • 1
  1. 1.Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research CenterRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemistry and TechnologyMoscowRussia

Personalised recommendations