Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 370–374 | Cite as

Purification and Investigation of Physicochemical and Regulatory Properties of Homogeneous L-Lactate: Cytochrom c Oxidoreductase Obtained from the Nonsulfur Purple Bacterium Rhodovulum steppense

  • A. T. Eprintsev
  • V. M. Larchenkov
  • N. R. Komarova
  • E. V. Kovaleva
  • A. V. Mitkevich
  • M. I. Falaleeva
  • E. I. Kompantseva
Article
  • 28 Downloads

Abstract

L-Lactate: cytochrome c oxidoreductase activity was detected in cells of strain A-20s of the nonsulfur haloalkalophilic purple bacterium Rhodovulum steppense. An electrophoretically homogeneous preparation of the enzyme was obtained by purification. The enzyme had a specific activity of 4.75 U/mg protein, a 81.9-fold purification degree, and a 2.2% yield. The kinetic and physicochemical characteristics were determined. The value of the Michaelis constant with lactate was 15 μM. The temperature optimum for the studied enzyme was 31°C; optimum of pH was 8.2. It was found that the enzyme was a homodimer with a molecular weight of ~140 kDa; the mass of individual subunit was 68 kDa.

Keywords

L-lactate: cytochrome c oxidoreductase haloalkalophilic purple bacteria ion exchange chromatography gel chromatography subunit structure electrophoresis the Michaelis constant Rhodovulum steppense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appleby, C.A. and Morton, R.K., Biochem. J., 1959, vol. 71, no. 3, pp. 492–499.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sinclair, R., Reid, G.A., and Chapman, S.K., Biochem. J., 1991, vol. 333, no. 1, pp. 117–120.CrossRefGoogle Scholar
  3. 3.
    Wienstroer, J., Engqvist, M.K., Kunz, H.H., Flugge, U.I., and Maurino, V.G., FEBS Lett., 2012, vol. 586, no. 1, pp. 36–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Flick, M.J. and Konieczny, S.F., Biochem. Biophys. Res. Commun., 2002, vol. 295, no. 4, pp. 910–916.CrossRefPubMedGoogle Scholar
  5. 5.
    Alexandrov, N.N., Brover, V.V., Freidin, S., Troukhan, M.E., Tatarinova, T.V., Zhang, H., Swaller, T.J., Lu, Y.P., Bouck, J., Flavell, R.B., and Feldmann, K.A., Plant Mol. Biol., 2009, vol. 69, nos. 1–2, pp. 179–194.CrossRefPubMedGoogle Scholar
  6. 6.
    Kikuma, T., Ohneda, M., Arioka, M., and Kitamoto, K., Eukaryot. Cell, 2006, vol. 5, no. 8, pp. 1328–1336.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Masuda, S., Hori, K., Maruyama, F., Res, S., Suqimoto, S., Yamamoto, N., Mori, H., Yamada, T., Sato, S., Tabata, S., Ohta, H., and Kurokawa, K., Genome Announcement, 2013, vol. 1, no. 3. e00577–13.Google Scholar
  8. 8.
    Nagao, N., Hirose, Y., Misawa, N., Umekage, S., and Kikuchi, Y., Genome Announcement, 2015, vol. 3, no. 2. e00388–15.CrossRefGoogle Scholar
  9. 9.
    Strnad, H., Lapidus, A., Paces, J., Ulbrich, P., Paces, V., and Haselkorn, R., J. Bacteriol., 2010, vol. 192, no. 13, pp. 3545–3546.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pel, H.J., de Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P., J., et al., Nat. Biotechnol., 2007, vol. 25, no. 2, pp. 221–231.CrossRefPubMedGoogle Scholar
  11. 11.
    Gao, C., Wang, Y., Lv, M., Dou, P., Xu, P., and Ma, C., J. Bacteriol., 2015, vol. 197, no. 13, pp. 2239–2247.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dmitruk, K.V., Smutok, O.V., Gonchar, M.V., and Sibirnyi, A.A., Microbiology (Moscow), 2008, vol. 77, no. 2, pp. 181–185.CrossRefGoogle Scholar
  13. 13.
    Eprintsev, A.T., Falaleeva, M.I., Lyashchenko, M.S., Gataullina, M.O., and Kompantseva, E.I., Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 138–142.CrossRefGoogle Scholar
  14. 14.
    Larchenkov, V.M., Sorokina, T.V., Akhmed, A.Kh., Tseluiko, Zh.A., Falaleeva, M.I., and Eprintsev, A.T., Sorbts. Khromatogr. Prots. (Voronezh), 2015, vol. 15, no. 5, pp. 714–719.Google Scholar
  15. 15.
    Kompantseva, E.I., Komova, A.V., and Kostrikina, N.A., Int. J. Syst. Evol. Microbiol., 2010, vol. 60, no. 5, pp. 1210–1214.CrossRefPubMedGoogle Scholar
  16. 16.
    Eprintsev, A.T., Falaleeva, M.I., Arabtseva, M.A., and Parfenova, I.V., Biol. Bull. (Moscow), 2009, vol. 36, no. 3, pp. 220–226.CrossRefGoogle Scholar
  17. 17.
    Eprintsev, A.T., Falaleeva, M.I., Klimova, M.A., and Parfenova, N.V., Appl. Biochem. Microbiol., 2006, vol. 42, no. 3, pp. 241–245.CrossRefGoogle Scholar
  18. 18.
    Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya shkola, 1990.Google Scholar
  19. 19.
    Cénas, N., Lê, K.H., Terrier, M., and Lederer, F., Biochemistry, 2007, vol. 46, no. 15, pp. 4661–4670.CrossRefPubMedGoogle Scholar
  20. 20.
    Lê, K.H., Boussac, A., Franqioni, B., Leger, C., and Lederer, F., Biochemistry, 2009, vol. 48, no. 45, pp. 10803–10809.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamashita, J. and Okunuki, K., J. Biochem., 1962, vol. 52, no. 2, pp. 117–124.CrossRefPubMedGoogle Scholar
  22. 22.
    Mowat, C.G., Beaudoin, I., Durley, R.C., Barthon, J.D., Pike, A.D., Chen, Z.W., Reid, G.A., Chapman, S.K., Mathews, F.S., and Lederer, F., Biochemistry, 2000, vol. 39, no. 12, pp. 3266–3275.CrossRefPubMedGoogle Scholar
  23. 23.
    Tegoni, M., Begotti, S., and Cambillau, C., Biochemistry, 1995, vol. 34, no. 31, pp. 9840–9850.CrossRefPubMedGoogle Scholar
  24. 24.
    Xia, Z.X. and Mathews, F.S., J. Mol. Biol., 1990, vol. 212, no. 4, pp. 837–863.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. T. Eprintsev
    • 1
  • V. M. Larchenkov
    • 1
  • N. R. Komarova
    • 1
  • E. V. Kovaleva
    • 1
  • A. V. Mitkevich
    • 1
  • M. I. Falaleeva
    • 1
  • E. I. Kompantseva
    • 2
  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Winogradsky Institute of Microbiology, Biotechnology Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations