Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 361–369 | Cite as

Trends in Oil Production from Oleaginous Yeast Using Biomass: Biotechnological Potential and Constraints

  • S. Chaturvedi
  • A. Bhattacharya
  • S. K. Khare
Article
  • 31 Downloads

Abstract

In the present scenario of depleting oil reservoir, microbial oil has gained much attention over plant and animal based sources. Among different microorganisms, yeast strains are considered superior source for oil production. The cost of oil produced by yeast could further be lowered using cheaper agro-waste and biomass as substrate. This review focuses on key topics which will help in gaining better understanding to enhance lipid production using yeast strains. The effects of oleaginous yeast co-culturing with microalgae, different cheap carbon sources of biomass, and types of yeast species on oil production were highlighted in the review. An overview of mechanisms of oil production from biomass, viz. pretreatment of biomass, fermentation and oil recovery are also provided. Constraints encountered during the oleogenesis or microbial oil accumulation and their probable solutions along with a section on different by-products obtained during oleo-genesis are also discussed.

Keywords

biofuel biomass oleaginous yeast inhibitors single cell oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khare, S.K., Pandey, A., and Larroche, C., Biochem. Eng. J., 2015, vol. 102, pp. 38–44.CrossRefGoogle Scholar
  2. 2.
    Yang, F., Hanna, M.A., and Sun, R., Biotechnol. Biofuels, 2012, vol. 5, pp. 13–22.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rathore, D., Nizami, A.S., Singh, A., and Pant, D., Biofuel Res. J., 2016, vol. 3, no. 2, pp. 380–393.CrossRefGoogle Scholar
  4. 4.
    Sitepu, I., Ignatia, L., Franz, A., Wong, D., Faulina, S., and Tsui, M., J. Microbiol. Meth., 2012, vol. 91, no. 2, pp. 321–328.CrossRefGoogle Scholar
  5. 5.
    Runguphan, W. and Keasling, J.D., Metab. Eng., 2014, vol. 21, pp. 103–113.PubMedCrossRefGoogle Scholar
  6. 6.
    Hong, K.K. and Nielsen, J., Cell. Mol. Life Sci., 2012, vol. 69, pp. 2671–2690.PubMedCrossRefGoogle Scholar
  7. 7.
    Yu, X.C., Zheng, Y.B., Dorgan, K.M., and Chen, S.L., Bioresour. Technol., 2011, vol. 102, pp. 6134–6140.PubMedCrossRefGoogle Scholar
  8. 8.
    Huang, C., Chen, X., Xiong, L., Chen, X., and Ma, L., Bioresour. Technol., 2012, vol. 110, pp. 711–714.PubMedCrossRefGoogle Scholar
  9. 9.
    Patel, A., Arora, N., Pruthi, V., and Pruthi, P.A., J. Cleaner Prod., 2017, vol. 142, pp. 2858–2864.CrossRefGoogle Scholar
  10. 10.
    Vyas, S. and Chhabra, M., Bioresour. Technol., 2017, vol. 223, pp. 250–258.PubMedCrossRefGoogle Scholar
  11. 11.
    Schneider, T., Graeff-Hönninger S, French W.T., Hernandez, R., Merkt, N., Claupein, W., et al., Energy, 2013, vol. 61, pp. 34–43.CrossRefGoogle Scholar
  12. 12.
    Schneider, T., Rempp, T., Graeff-Hönninger, S., French, W.T., and Hernandez, R.W.C., J. Sustainable Bioenergy Syst., 2013, vol. 3, pp. 57–63.CrossRefGoogle Scholar
  13. 13.
    Zhang, Z., Zhang, X., and Tan, T., Bioresour. Technol., 2014, vol. 157, pp. 149–153.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu, Y., Wang, Y., Liu, H., and Zhang, J., Bioresour. Technol., 2015, vol. 180, pp. 32–39.PubMedCrossRefGoogle Scholar
  15. 15.
    Gong, Z., Shen, H., Yang, X., Wang, Q., Xie, H., and Zhao, Z.K., Biotechnol. Biofuels, 2014, vol. 7, p.158.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Economou, C.N., Aggelis, G., Pavlou, S., and Vayenas, D.V., Bioresour. Technol., 2011, vol. 102, pp. 9737–9742.PubMedCrossRefGoogle Scholar
  17. 17.
    Karatay, S.E. and Dönmez, G., Bioresour. Technol., 2010, vol. 101, pp. 7988–7990.PubMedCrossRefGoogle Scholar
  18. 18.
    Yen, H.W. and Chang, J.T., J. Biosci. Bioeng., 2014, vol. 119, pp. 580–584.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhang, F., Rodriguez, S., and Keasling, J.D., Curr. Opin. Biotechnol., 2011, vol. 22, pp. 775–783.PubMedCrossRefGoogle Scholar
  20. 20.
    Gao, Q., Cui, Z., Zhang, J., and Bao, J., Bioresour. Technol., 2014, vol. 152, pp. 552–556.PubMedCrossRefGoogle Scholar
  21. 21.
    Sadaf, A., Morya, V.K., and Khare, S.K., Proc. Biochem., 2016, vol. 51, pp. 2090–2096.CrossRefGoogle Scholar
  22. 22.
    Grewal, J., Ahmad, R., and Khare, S.K., Bioresour. Technology, 2017, vol. 242, pp. 236–243.CrossRefGoogle Scholar
  23. 23.
    Poli, J.S., Dallé, P., Senter, L., Mendes, S., Ramirez, M., Vainstein, M., and Valente, P., Rev. Bras. Biocienc., 2013, vol. 11, pp. 203–208.Google Scholar
  24. 24.
    Ratledge, C., Biochem. Soc. Trans., 2002, vol. 30, pp. 1047–1050.PubMedCrossRefGoogle Scholar
  25. 25.
    Wiebe, M., Koivuranta, K., Penttila, M., and Ruohonen, L., MC Biotechnol., 2012, vol. 12, p.26.Google Scholar
  26. 26.
    Gong, Z., Wang, Q., Shen, H., Hu, C., Jin, G., and Zongbao, K., Bioresour. Technol., 2012, vol. 117, pp. 20–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M., Renew. Energy, 2009, vol. 34, pp. 1–5.CrossRefGoogle Scholar
  28. 28.
    Katre, G., Joshi, C., Khot, M., Zinjarde, S., and Ravi-Kumar, A., AMB Express, 2012, vol. 2, pp. 1–14.CrossRefGoogle Scholar
  29. 29.
    Zhao, X., Kong, X., Hua, Y., Feng, B., and Zhao, Z., Eur. J. Lipid Sci. Technol., 2008, vol. 110, pp. 405–412.CrossRefGoogle Scholar
  30. 30.
    Li, Y.H., Zhao, Z.B., and Bai, F.W., Enzyme Microb. Technol., 2007, vol. 41, pp. 312–317.CrossRefGoogle Scholar
  31. 31.
    Zhu, L.Y., Zong, M.H., and Wu, H., Bioresour. Technol., 2008, vol. 99, pp. 7881–7885.PubMedCrossRefGoogle Scholar
  32. 32.
    Li, M., Liu, G.L., Chi, Z., and Chi, Z.M., Biomass Bioenergy, 2010, vol. 34, pp. 101–107.CrossRefGoogle Scholar
  33. 33.
    Wang, Q., Guo, F.J., Rong, Y.J., and Chi, Z.M., Renew. Energy, 2012, vol. 46, no. 1, pp. 164–168.CrossRefGoogle Scholar
  34. 34.
    Sitepu, I.R., Jin, M., Fernandez, J.E., da Costa Sousa, L., Balan, V., and Boundy-Mills, K.L., Appl. Microbiol. Biotechnol., 2014, vol. 98, no. 17, pp. 7645–7657.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Mast, B., Zöhrens, N., Schmidl, F., Hernandez, R., French, W.T., Merkt, N., Claupein, W., and Graeff-Hönninger, S., Waste Biomass Valorization, 2014, vol. 5, no. 6, pp. 955–962.CrossRefGoogle Scholar
  36. 36.
    Xavier, M.C.A., Coradini, A.L.V., Deckmann, A.C., and Franco, T.T., Biochem. Eng. J., 2017, vol. 118, pp. 11–19.CrossRefGoogle Scholar
  37. 37.
    Liang, Y., Tang, T., Siddaramu, T., Choudhary, R., and Umagiliyage, A.L., Renew. Energy, 2012, vol. 40, no. 1, pp. 130–136.CrossRefGoogle Scholar
  38. 38.
    Microbial Lipids, Ratledge C., Wilkinson S., Eds., London: Academic Press, Harcourt Brace Jovanovich, 1989, vol. 2, pp. 567–668.Google Scholar
  39. 39.
    Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J.L., Molina-Jouve, C., and Nicaud, J.M., Prog. Lipid Res., 2009, vol. 48, no. 6, pp. 375–387.PubMedCrossRefGoogle Scholar
  40. 40.
    Kraisintu, P., Yongmanitchai, W., and Limtong, S., J. Nat. Sci., 2010, vol. 44, pp. 436–445.Google Scholar
  41. 41.
    Sitepu, I.R., Garay, L.A., Sestric, R., Levin, D., Block, D.E., German, J.B., and Boundy-Mills, K.L., Biotechnol. Adv., 2014, vol. 32, no. 7, pp. 1336–1360.PubMedCrossRefGoogle Scholar
  42. 42.
    Amaretti, A., Raimondi, S., Sala, M., Roncaglia, L., De Lucia, M., and Leonardi, A., Microb. Cell Fact., 2010, vol. 9, p.73.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Rattray, J., Scheibeci, A., and Kidby, D., Bacteriol. Rev., 1975, vol. 39, pp. 197–231.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Brown, C. and Rose, A., J. Bacteriol., 1969, vol. 99, no. 2, pp. 371–378.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Hunter, K. and Rose, A.H., Biochim. Biophys. Acta—Lipids Lipid Metab., 1972, vol. 260, pp. 639–653.CrossRefGoogle Scholar
  46. 46.
    Kates, M. and Paradis, M., Can. J. Biochem., 1973, vol. 51, pp. 184–197.PubMedCrossRefGoogle Scholar
  47. 47.
    Miller, J. and Webb, N., Soil Sci., 1954, vol. 77, pp. 197–204.CrossRefGoogle Scholar
  48. 48.
    Turcotte, G. and Kosaric, N., Adv. Biochem. Eng. Biotechnol., 1989, vol. 40, pp. 74–92.Google Scholar
  49. 49.
    Kessell, R., J. Appl. Microbiol., 1968, vol. 31, pp. 220–231.Google Scholar
  50. 50.
    Evans, C. and Ratledge, C., J. Gen. Microbiol., 1984, vol. 130, pp. 1693–1704.Google Scholar
  51. 51.
    Sitepu, I.R., Sestric, R., Ignatia, L., Levin, D., Bruce German, J., and Gillies, L.A., Bioresour. Technol., 2013, vol. 144, pp. 360–369.PubMedCrossRefGoogle Scholar
  52. 52.
    Parawira, W. and Tekere, M., Crit. Rev. Biotechnol., 2011, vol. 31, pp. 20–31.PubMedCrossRefGoogle Scholar
  53. 53.
    Zha, Y., Muilwijk, B., Coulier, L., and Punt, P., J. Bioprocess Biotechniq., 2012, vol. 2, pp. 112–122.CrossRefGoogle Scholar
  54. 54.
    Huang, C., Chen, X.F., Xiong, L., Yang, X.Y., Chen, X.D., and Ma, L.L., Biomass Bioenergy, 2013, vol. 49, pp. 273–278.CrossRefGoogle Scholar
  55. 55.
    Hu, C., Zhao, X., Zhao, J., Wu, S., and Zongbao, K., Bioresour. Technol., 2009, vol. 100, pp. 4843–4847.PubMedCrossRefGoogle Scholar
  56. 56.
    Galafassi, S., Cucchetti, D., Pizza, F., Franzosi, G., Bianchi, D., and Compagno, C., Technol., 2012, vol. 111, no. 1, pp. 398–403.Google Scholar
  57. 57.
    Sitepu, I., Selby, T., Zhu, S., Lin, T., and Boundy-Mills, K., J. Ind. Microbiol. Biotechnol., 2014, vol. 41, pp. 1061–1070.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Qi, F., Kitahara, Y., Wang, Z., Zhao, X., Du, W., and Liu, D., J. Chem. Technol. Biotechnol., 2013, vol. 89, pp. 735–742.CrossRefGoogle Scholar
  59. 59.
    Liang, M.H. and Jiang, J.G., Prog. Lipid Res., 2013, vol. 52, no. 4, pp. 395–408.PubMedCrossRefGoogle Scholar
  60. 60.
    Tai, M. and Stephanopoulos, G., Metab. Eng., 2013, vol. 15, pp. 1–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Wang, J.J., Zhang, B.R., and Chen, S.L., Process Biochem., 2011, vol. 46, no. 7, pp. 1436–1441.CrossRefGoogle Scholar
  62. 62.
    Zhang, Z., Ji, H., Gong, G., Zhang, X., and Tan, T., Bioresour. Technol., 2014, vol. 164, pp. 93–99.PubMedCrossRefGoogle Scholar
  63. 63.
    Yen, H.W., Chen, P.W., and Chen, L.J., Bioresour. Technol., 2015, vol. 184, pp. 148–152.PubMedCrossRefGoogle Scholar
  64. 64.
    Qin, L., Liu, L., Zeng, A.P., and Wei, D., Bioresour. Technol., 2017, vol. 163. https://doi.org/10.1016/j.biortech
  65. 65.
    Sheng, J. and Feng, K., Front Microbiol., 2015, vol. 6, p.554.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Shi, L. and Tu, B.P., Curr. Opin. Cell Biol., 2015, vol. 33C, pp. 125–131.CrossRefGoogle Scholar
  67. 67.
    Pfeiffer, T. and Morley, A., Front. Mol. Biosci., 2014, vol. 1, p.17.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y., and Nielsen, J., Metab. Eng., 2015, vol. 28, pp. 28–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Lian, J. and Zhao, H., J. Ind. Microbiol. Biotechnol., 2014, vol. 42, pp. 437–451.PubMedCrossRefGoogle Scholar
  70. 70.
    Valle-Rodríguez, J.O., Shi, S., Siewers, V., and Nielsen, J., Appl. Energy, 2014, vol. 115, pp. 226–232.CrossRefGoogle Scholar
  71. 71.
    Guo, Z.P., Zhang, L., Ding, Z.Y., and Shi, G.Y., Metab. Eng., 2011, vol. 13, pp. 49–59.PubMedCrossRefGoogle Scholar
  72. 72.
    De Jong, B.W., Shi, S., Siewers, V., and Nielsen, J, Microb. Cell Fact., 2014, vol. 13, p.39.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Chen, Y., Bao, J., Kim, I.K., Siewers, V., and Nielsen, J., Metab. Eng., 2014, vol. 22, pp. 104–109.PubMedCrossRefGoogle Scholar
  74. 74.
    Buijs, N.A., Zhou, Y.J., Siewers, V., and Nielsen, J., Biotechnol. Bioeng., 2014, vol. 112, pp. 1275–1279.CrossRefGoogle Scholar
  75. 75.
    Chen, B.L.H. and Chang, M.W., Biotechnol. Biofuels, 2013, vol. 6, p.10.CrossRefGoogle Scholar
  76. 76.
    Blazeck, J., Hill, A., Liu, L., Knight, R., Miller, J., and Pan, A., Nat. Commun., 2014, vol. 5, p. 3131.PubMedCrossRefGoogle Scholar
  77. 77.
    Maoka, T., Mar. Drugs, 2011, vol. 9, pp. 278–293.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Fraser, P.D. and Bramley, P.M., Progress Lipid Res., 2004, vol. 43, pp. 228–265.CrossRefGoogle Scholar
  79. 79.
    Cui, J., Liang, L., Han, C., and Liu, R.L., Appl. Biochem. Biotechnol., 2015, vol. 176, pp. 999–1011.PubMedCrossRefGoogle Scholar
  80. 80.
    Adalberto, A., Neto, K., Borin, G.P., Goldman, G.H., Ricardo, A., Damásio, D.L., and De Castro, J.V., FEMS Yeast Res., 2015, pp. 1–12.Google Scholar
  81. 81.
    Rong, Y., Zhang, L., Chi, Z., and Wang, X., J. Ocean Univ. China, 2015, vol. 14, pp. 913–921.CrossRefGoogle Scholar
  82. 82.
    Khayati, G. and Alizadeh, S., Fluid Phase Equilib., 2013, vol. 353, pp. 132–134.CrossRefGoogle Scholar
  83. 83.
    Martínez, C., Gertosio, C., Labbe, A., Pérez, R., and Ganga, M.A., Electron. J. Biotechnol., 2006, vol. 9, pp. 407–413.CrossRefGoogle Scholar
  84. 84.
    Canli, O., Erdal, S., Taskin, M., and Kurbanoglu, E.B., Toxicol. Ind. Health, 2011, vol. 27, pp. 35–399.PubMedCrossRefGoogle Scholar
  85. 85.
    Taskin, M., Bioprocess Biosyst. Eng., 2013, vol. 36, pp. 165–172.PubMedCrossRefGoogle Scholar
  86. 86.
    Zhu, L., Zhou, L., Cui, W., Liu, Z., and Zhou, Z., Biotechnol. Rep., 2014, vol. 3, pp. 21–26.CrossRefGoogle Scholar
  87. 87.
    Longo, N., Harding, C.O., Burton, B.K., Grange, D.K., Vockey, J., Wasserstein, M. et al., Lancet, 2014, vol. 384, pp. 37–44.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    D’Cunha, G.B., Enzym. Microb. Technol., 2005, vol. 36, pp. 498–502.CrossRefGoogle Scholar
  89. 89.
    Buzzini, P. and Martini, A., Bioresour. Technol., 1999, vol. 71, pp. 41–44.CrossRefGoogle Scholar
  90. 90.
    Uprety, B.K., Dalli, S.S., and Rakshit, S.K., Energy Conv. Manag., 2017, vol. 135, pp. 117–128.CrossRefGoogle Scholar
  91. 91.
    Saran, S., Mathur, A., Dalal, J., and Saxena, R.K., Fuel, 2017, vol. 188, pp. 324–331.CrossRefGoogle Scholar
  92. 92.
    Ayadi, I., Kamoun, O., Trigui-Lahiani, H., Hdiji, A., Gargouri, A., Belghith, H., and Guerfali, M., J. Ind. Microbiol. Biotechnol., 2016, vol. 43, pp. 901–914.PubMedCrossRefGoogle Scholar
  93. 93.
    Chung, J., Lee, I., and Han, J.I., Fuel, 2016, vol. 186, pp. 305–310.CrossRefGoogle Scholar
  94. 94.
    Xu, J., Du, W., Zhao, X., and Liu, D., World J. Microbiol. Biotechnol., 2016, vol. 32, p.107.PubMedCrossRefGoogle Scholar
  95. 95.
    Srisuwan, W., Techapun, C., Seesuriyachan, P., Watanabe, M., and Chaiyaso, T., KKU Res. J., 2016, vol. 21, pp. 116–126.Google Scholar
  96. 96.
    Taskin, M., Ortucu, S., Aydogan, M.N., and Arslan, N.P., Renew. Energy, 2016, vol. 99, pp. 198–204.CrossRefGoogle Scholar
  97. 97.
    Deeba, F., Pruthi, V., and Negi, Y.S., Bioresour. Technol., 2016, vol. 213, pp. 96–102.PubMedCrossRefGoogle Scholar
  98. 98.
    Munch, G., Sestric, R., Sparling, R., Levin, D.B., and Cicek, N., Bioresour. Technol., 2015, vol. 185, pp. 49–55.PubMedCrossRefGoogle Scholar
  99. 99.
    Leiva-Candia, D.E., Tsakona, S., Kopsahelis, N., García, I.L., Papanikolaou, S., Dorado, M.P., and Koutinas, A.A., Bioresour. Technol., 2015, vol. 190, pp. 57–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Kanti, A. and Sudiana, M., Curr. Res. Environ. Appl. Mycol., 2015, vol. 5, pp. 349–356.CrossRefGoogle Scholar
  101. 101.
    Tanimura, A., Takashima, M., Sugita, T., Endoh, R., Kikukawa, M., Yamaguchi, S., et al., Sci. Rep., 2014, vol. 4, p. 4776.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Magdouli, S., Brar, S.K., and Blais, J.F., Biomass Bioenergy, 2016, vol. 92, pp. 20–30.CrossRefGoogle Scholar
  103. 103.
    Shu, C.H. and Tsai, C.C., J. Taiwan Inst. Chem. Eng., 2016, vol. 67, pp. 377–384.CrossRefGoogle Scholar
  104. 104.
    Papone, T., Kookkhunthod, S., Paungbut, M., and Leesing, R., J. Clean Energy Technol., 2016, vol. 4, no. 4, pp. 253–256.CrossRefGoogle Scholar
  105. 105.
    DoNascimento, M., Ortiz-Marquez, J.C.F., Sanchez-Rizza, L., Echarte, M.M., and Curatti, L., Bioresour. Technol., 2012, vol. 125, pp. 283–290.CrossRefGoogle Scholar
  106. 106.
    Kitcha, S. and Cheirsilp, B., Appl. Biochem. Biotechnol., 2014, vol. 173, no. 2, pp. 522–534.PubMedCrossRefGoogle Scholar
  107. 107.
    Ryu, B.G., Kim, J., Farooq, W., Han, J.I., Yang, J.W., and Kim, W., Bioresour. Technol, 2014, vol. 162, pp. 70–79.PubMedCrossRefGoogle Scholar
  108. 108.
    Ling, J., Nip, S., Cheok, W.L., de Toledo, R.A., and Shim, H., Bioresour. Technol., 2014, vol. 173, pp. 132–139.PubMedCrossRefGoogle Scholar
  109. 109.
    Oh, H.M., Ahn, C.Y., Lee, Y.K., Kim, H.S., and Ko, S.R., US Patent no. US20140087420, 2014.Google Scholar
  110. 110.
    Wu, S., Li, X., Yu, J., and Wang, Q., Bioresour. Technol., 2012, vol. 123, pp. 184–188.PubMedCrossRefGoogle Scholar
  111. 111.
    Cheirsilp, B., Suwannarat, W., and Niyomdecha, R., Nat. Biotechnol., 2011, vol. 28, no. 4, pp. 362–368.Google Scholar
  112. 112.
    Xue, F., Miao, J., Zhang, X., and Tan, T., Appl Biochem. Biotechnol., 2010, vol. 160, no. 2, pp. 498–503.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Enzyme and Microbial Biochemistry lab., Department of ChemistryIndian Institute of TechnologyDelhiIndia

Personalised recommendations