Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 4, pp 379–386 | Cite as

BSA Adsorption on Porous Scaffolds Prepared from BioPEGylated Poly(3-Hydroxybutyrate)

  • A. P. Bonartsev
  • V. V. Voinova
  • E. S. Kuznetsova
  • I. I. Zharkova
  • T. K. Makhina
  • V. L. Myshkina
  • D. V. Chesnokova
  • K. S. Kudryashova
  • A. V. Feofanov
  • K. V. Shaitan
  • G. A. Bonartseva
Article
  • 2 Downloads

Abstract

Porous scaffolds for tissue engineering have been prepared from poly(3-hydroxybutyrate) (PHB) and a copolymer of poly(3-hydroxybutyrate) and polyethylene glycol (PHB-PEG) produced by bioPEGylation. The morphology of the scaffolds and their capacity for adsorption of the model protein bovine serum albumin (BSA) have been studied. Scaffolds produced from bioPEGylated PHB adsorbed more BSA, whereas the share of protein irreversibly adsorbed on these scaffolds was significantly lower (33%) than in the case of PHB homopolymer-based scaffolds (47%). The effect of protein adsorption on scaffold biocompatibility in vitro was tested in an experiment that involved the cultivation of fibroblasts (line COS-1) on the scaffolds. PHB-PEG scaffolds had a higher capacity for supporting cell growth than PHB-based scaffolds. Thus, the bioPEGylated PHB-based polymer scaffolds developed in the present study have considerable potential for use in soft tissue engineering.

Keywords

poly(3-hydroxybutyrate) bovine serum albumin bioPEGylation polyethylene glycol adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lim, J., You, M., Li, J., and Li, Z., Mater. Sci. Eng. C Mater. Biol. Appl., 2017, vol. 79, pp. 917–929.CrossRefPubMedGoogle Scholar
  2. 2.
    Bonartsev, A.P., Bonartseva, G.A., Shaitan, K.V., and Kirpichnikov, M.P., Biomed. Khim., 2011, vol. 57, no. 4, pp. 374–391.CrossRefPubMedGoogle Scholar
  3. 3.
    Chan, R.T., Marcal, H., Ahmed, T., Russell, R.A., Holden, P.J., and Foster, L.J.R., Polymer Int., 2013, vol. 62, no. 6, pp. 884–892.CrossRefGoogle Scholar
  4. 4.
    Dominguez-Diaz, M., Meneses-Acosta, A., Romo-Uribe, A., Pena, C., Segura, D., and Espin, G., Eur. Polym. J., 2015, vol. 63, pp. 101–112.CrossRefGoogle Scholar
  5. 5.
    Bonartsev, A.P., Yakovlev, S.G., Zharkova, I.I., Boskhomdzhiev, A.P., Bagrov, D.V., Myshkina, V.L., Makhina, T.K., Kharitonova, E.P., Samsonova, O.V., Feofanov, A.V., Voinova, V.V., Zernov, A.L., Efremov, Yu.M., Bonartseva, G.A., Shaitan, K.V., and Kirpichnikov, M.P., BMC Biochem., 2013, vol. 14, p.12.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bonartsev, A.P., Zharkova, I.I., Yakovlev, S.G., Myshkina, V.L., Mahina, T.K., Voinova, V.V., Zernov, A.L., Zhuikov, V.A., Akoulina, E.A., Ivanova, E.V., Kuznetsova, E.S., Shaitan, K.V., and Bonartseva, G.A., Prep. Biochem. Biotechnol., 2017, vol. 47, no. 2, pp. 173–184.CrossRefPubMedGoogle Scholar
  7. 7.
    Chan, R.T., Russell, R.A., Marcal, H., Lee, T.H., Holden, P.J., and Foster, L.J., Biomacromolecules, 2014, vol. 15, no. 1, pp. 339–349.CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, G., Cai, Z., and Wang, L., J. Mater. Sci. Mater. Med., 2003, vol. 14, no. 12, pp. 1073–1078.CrossRefPubMedGoogle Scholar
  9. 9.
    Nemets, E.A., Efimov, A.E., Egorova, V.A., Tonevitsky, A.G., and Sevastianov, V.I., Bull. Exp. Biol. Med., 2008, vol. 145, no. 3, pp. 371–373.CrossRefPubMedGoogle Scholar
  10. 10.
    Monnier, A., Rombouts, C., Kouider, D., About, I., Fessi, H., and Sheibat-Othman, N., Int. J. Pharm., 2016, vol. 513, nos. 1–2, pp. 49–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Biosovmestimye materialy: Uchebnoe posobie (Biocompatible Materials: A Textbook), Sevast’yanov, V.I. and Kirpichnikov, M.P., Eds., Moscow: Med. Inform. Agentstvo, 2011.Google Scholar
  12. 12.
    Reusch, R.N., Med. Hypotheses, 2015, vol. 85, no. 6, pp. 1041–1043.CrossRefPubMedGoogle Scholar
  13. 13.
    Pavlova, E.R., Bagrov, D.V., Kopitsyna, M.N., Shchelokov, D.A., Bonartsev, A.P., Zharkova, I.I., Mahina, T.K., Myshkina, V.L., Bonartseva, G.A., Shaitan, K.V., and Klinov, D.V., J. Appl. Polym. Sci., 2017, vol. 134, p. 45090.CrossRefGoogle Scholar
  14. 14.
    Atkins, T.W. and Peacock, S.J., J. Biomater. Sci. Polym. Ed., 1996, vol. 7, no. 12, pp. 1065–1073.CrossRefPubMedGoogle Scholar
  15. 15.
    Baran, E.T., Ozer, N., and Hasirci, V., J. Microencapsul., 2002, vol. 19, no. 3, pp. 363–376.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhu, X.H., Wang, C.H., and Tong, Y.W., J. Biomed. Mater. Res. A, 2009, vol. 89, no. 2, pp. 411–423.CrossRefPubMedGoogle Scholar
  17. 17.
    Myshkina, V.L., Nikolaeva, D.A., Makhina, T.K., Bonartsev, A.P., and Bonartseva, G.A., Appl. Biochem. Microbiol., 2008, vol. 44, no. 5, pp. 482–486.CrossRefGoogle Scholar
  18. 18.
    Kundu, J., Pati, F., Hun Jeong, Y., and Cho, D.W., in Biomaterials for Biofabrication of 3D Tissue Scaffolds. Biofabrication: Micro-and Nano-Fabrication, Printing, Patterning and Assemblies, Forgacs, G. and Sun, W., Eds., Oxford, UK: Elsevier, 2013, pp. 23–46.Google Scholar
  19. 19.
    Bonartsev, A.P., Zharkova, I.I., Yakovlev, S.G., Myshkina, V.L., Makhina, T.K., Zernov, A.L., Kudryashova, K.S., Feofanov, A.V., Akulina, E.A., Ivanova, E.V., Zhuikov, V.A., Volkov, A.V., Andreeva, N.V., Voinova, V.V., Bonartseva, G.A., Shaitan, K.V., and Kirpichnikov, M.P., J. Biomater. Tissue Eng., 2016, vol. 6, no. 1, pp. 42–52.CrossRefGoogle Scholar
  20. 20.
    Karageorgiou, V. and Kaplan, D., Biomaterials, 2005, vol. 26, no. 27, pp. 5474–5491.CrossRefPubMedGoogle Scholar
  21. 21.
    Bian, Y.Z., Wang, Y., Aibaidoula, G., Chen, G.Q., and Wu, Q., Biomaterials, 2009, vol. 30, no. 2, pp. 217–225.CrossRefPubMedGoogle Scholar
  22. 22.
    Venault, A., Subarja, A., and Chang, Y., Langmuir, 2017, vol. 33, no. 9, pp. 2460–2471.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhan, J., Wang, L., Liu, S., Chen, J., Ren, L., and Wang, Y., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 25, pp. 13876–13881.CrossRefPubMedGoogle Scholar
  24. 24.
    Peng, Q., Wei, X.Q., Yang, Q., Zhang, S., Zhang, T., Shao, X.R., Cai, X.X., Zhang, Z.R., and Lin, Y.F., Int. J. Nanomedicine, 2015, vol. 10, no. 2, pp. 205–214.CrossRefGoogle Scholar
  25. 25.
    Kulikova, T., Akhtar, R., Aldebert, P., Althorpe, N., Andersson, M., Baldwin, A., Bates, K., Bhattacharyya, S., Bower, L., Browne, P., Castro, M., Cochrane, G., Duggan, K., Eberhardt, R., Faruque, N., Hoad, G., Kanz, C., Lee, C., Leinonen, R., Lin, Q., Lombard, V., Lopez, R., Lorenc, D., McWilliam, H., Mukherjee, G., Nardone, F., Pastor, M.P., Plaister, S., Sobhany, S., Stoehr, P., Vaughan, R., Wu, D., Zhu, W., and Apweiler, R., Nucleic Acids Res., 2007, vol. 35, suppl. 1, pp. D16–D20.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. P. Bonartsev
    • 1
    • 2
  • V. V. Voinova
    • 1
    • 2
  • E. S. Kuznetsova
    • 2
  • I. I. Zharkova
    • 2
  • T. K. Makhina
    • 1
  • V. L. Myshkina
    • 1
  • D. V. Chesnokova
    • 2
  • K. S. Kudryashova
    • 2
  • A. V. Feofanov
    • 2
  • K. V. Shaitan
    • 2
  • G. A. Bonartseva
    • 1
  1. 1.Bach Institute of BiochemistryFederal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations