Applied Biochemistry and Microbiology

, Volume 54, Issue 3, pp 288–293 | Cite as

Improved Tolerance of Escherichia coli to Propionic Acid by Overexpression of Sigma Factor RpoS

  • S. Run
  • P. Tian


Propionic acid (PA) is an economically important compound, but large-scale microbial production of PA confronts obstacle such as acid stress on microbial cells. Here, we show that overexpressing sigma factor RpoS improves the acid tolerance of Escherichia coli. Four genes including rpoS, fur, pgi and dnaK (encoding RNA polymerase sigma factor, ferric uptake regulator, phosphoglucoisomerase, and chaperone, respectively) were independently overexpressed in E. coli. The recombinant E. coli overexpressing rpoS showed the highest PA tolerance. This strain could grow in M9 medium at pH 4.62, whereas wild type E. coli survived only at pHs above 5.12. Moreover, in the shake-flask cultivation, the E. coli strain overexpressing rpoS grew faster than wild type. Notably, the minimum inhibitory concentration of PA for this recombinant strain was 7.81 mg/mL, which was 2-fold higher in comparison with wild type. Overall these results indicated that overexpression of sigma factor rpoS significantly enhanced E. coli tolerance to PA.


Escherichia coli propionic acid rpoS pgi tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feng, X., Xu, H., and Yao, J., Appl. Biochem. Biotech., 2010, vol. 160, no. 2, pp. 343–349.CrossRefGoogle Scholar
  2. 2.
    Liu, L., Zhu, Y., Li, J., Wang, M., Lee, P., Du, G., and Chen, J., Crit. Rev. Biotechnol., 2012, vol. 32, no. 4, pp. 374–381.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhu, Y., Li, J., Tan, M., Liu, L., Jiang, L., Sun, J., et al., Bioresour. Technol., 2010, vol. 101, no. 22, pp. 8902–8906.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang, A. and Yang, S., Biotechnol. Bioeng., 2009, vol. 104, no. 4, pp. 766–773.PubMedGoogle Scholar
  5. 5.
    Zhu, L., Wei, P., Cai, J., Zhu, X., Wang, Z., Huang, L., and Xu, Z., Bioresour. Technol., 2012, vol. 112, no. 1, pp. 248–253.CrossRefPubMedGoogle Scholar
  6. 6.
    Peng, W., Wang, Y., and Su, Z., Appl. Biochem. Biotech., 2012, vol. 166, no. 4, pp. 974–986.CrossRefGoogle Scholar
  7. 7.
    Arnold, C.N., McElhanon, J., Lee, A., Leonhart, R., and Siegele, D.A., J. Bacteriol., 2001, vol. 183, no. 7, pp. 2178–2186.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Weber, H., Polen, T., Heuveling, J., Wendisch, V. F., and Hengge, R., J. Bacteriol, 2005, vol. 187, no. 5, pp. 1591–1603.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Appukuttan, D., Singh, H., Park, S.H., Jung, J.H., Jeong, S., Seo, H.S., et al., Appl. Envir. Microbiol., 2016, vol. 82, no. 4, pp. 1154–1166.CrossRefGoogle Scholar
  10. 10.
    Hu, Y. and Sun, L., J. Proteomics, 2016, vol. 140, pp. 100–110.CrossRefPubMedGoogle Scholar
  11. 11.
    Al-Mahin, A., Sugimoto, S., Higashi, C., Matsumoto, S., and Sonomoto, K., 2010, Appl. Envir. Microbiol., vol. 76, no. 13, pp. 4277–4285.CrossRefGoogle Scholar
  12. 12.
    Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., and Stephanopoulos, G., Science, 2006, vol. 314, no. 5805, pp. 1565–1568.CrossRefPubMedGoogle Scholar
  13. 13.
    Schuurmans, J.M., Nuri Hayali, A.S., Koenders, B.B., and ter Kuile, B.H., J. Microbiol. Methods, 2009, vol. 79, pp. 44–47.CrossRefPubMedGoogle Scholar
  14. 14.
    Merrikh, H., Ferrazzoli, A.E., Bougdour, A., Olivier-Mason, A., and Lovett, S. T., Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 2, pp. 611–616.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Murakami, K., Ono, T., Viducic, D., Kayama, S., Mori, M., Hirota, K., et al., FEMS Microbiol. Lett., 2005, vol. 242, no. 1, pp. 161–167.CrossRefPubMedGoogle Scholar
  16. 16.
    Lefort, M. C., Brown, S., Boyer, S., Worner, S., and Armstrong, K., Peer J., 2014, vol. 2, pp. e676–e676.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cahoon, R.E., Lutke, W.K., Cameron, J.C., Chen, S., Lee, S.G., Rivard, R.S., et al., J. Biol. Chem., 2015, vol. 290, pp. 17321–17330.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Goodarzi, H., Bennett, B.D., Amini, S., Reaves, M.L., Hottes, A.K., Rabinowitz, J.D., and Tavazoie, S., Mol. Syst. Biol., 2010, vol. 6, no. 1, pp. 378.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Patnaik, R., Louie, S., Gavrilovic, V., Perry, K., Stemmer, W.P.C., Ryan, C. M., and del Cardayre, S., Nat. Biotechnol., 2002, vol. 20, no. 7, pp. 707–712.CrossRefPubMedGoogle Scholar
  20. 20.
    La Russa, M.F. and Qi, L.S., Mol. Cell Biol., 2015, vol. 35, no. 22, pp. 3800–3809.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Westbrook, A.W., Moo-Young, M., and Chou, C.P., Appl. Envir. Microbiol., 2016, vol. 82, no. 16, pp. 4876–4895.CrossRefGoogle Scholar
  22. 22.
    Chen, Y., Stabryla, L., and Wei, N., Appl. Envir. Microbiol., 2016, vol. 82, no. 7, pp. 2156–2166.CrossRefGoogle Scholar
  23. 23.
    Gaida, S.M., Al–Hinai, M.A., Indurthi, D.C., Nicolaou, S.A., and Papoutsakis, E.T., Nucleic Acids Res., 2013, vol. 41, no. 18, pp. 8726–8737.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zingaro, K.A., and Papoutsakis, E.T., mBio, 2012, vol. 3, no. 5, p. e00308-12.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations