Applied Biochemistry and Microbiology

, Volume 54, Issue 3, pp 262–268 | Cite as

Studies on Degradation of 7-ketocholesterol by Environmental Bacterial Isolates

  • I. Perveen
  • M. A. Raza
  • S. Sehar
  • I. Naz
  • M. I. Memon
  • S. Ahmed


Medical bioremediation is a unique strategy of targeting pathogenic compounds with an exogenous enzyme of microbial origin. The objective of this study was to isolate and screen the microorganisms from diverse environmental samples for their ability to catabolize 7-ketocholesterol. Isolation of bacterial strains was performed and molecular identification was carried out by amplification and sequencing of 16S rDNA for 4 the best degrader isolates. Degradation was confirmed on the basis of UV spectrophotometric and HPLC analysis. Four bacterial isolates, showing high catabolic activity towards 7-ketocholesterol were isolated: Alcanivorax jadensis IP4 (accession number KP309836; sea water sediment), Streptomyces auratus IP2 (accession number KP309837; soil), Serratia marcescens IP3 (accession number KP309838; soil) and Thermobifida fusca IP1 (accession number KM677184; manure piles). All the isolates were capable of utilizing 7-ketocholesterol as the sole organic substrate, resulting in its mineralisation. The most rapid degradation was observed with A. jadensis IP4 followed by T. fusca IP1. The degradation was followed and analyzed by HPLC. A. jadensis IP4 removed 7-ketocholesterol below detection levels within 8 days.


7-ketocholesterol oxysterol atherosclerosis biodegradation medical bioremediation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krause, M.R. and Regen, S.L., Accounts Chem. Res., 2014, vol. 47, no. 12, pp. 3512–3521.CrossRefGoogle Scholar
  2. 2.
    Brown, A.J., Ikonen, E., and Olkkonen, V.M. Curr. Opin. Lipidol., 2014, vol. 25, pp. 133–139.CrossRefPubMedGoogle Scholar
  3. 3.
    Cholesterol and Phytosterol Oxidation Products: Analysis, Occurrence, and Biological Effects, Grandgirard, A., Guardiola, F., Dutta, P., Codony, R., and Savage, G., Eds., Champaign, IL: AOCS Press, 2002.Google Scholar
  4. 4.
    Colles, S.M., Maxson, J.M., Carlson, S.G., and Chisolm, G.M., Trends Cardiovasc. Med., 2001, vol. 11, pp. 131–138.CrossRefPubMedGoogle Scholar
  5. 5.
    Björkhem, I., Heverin, M., Leoni, V., Meaney, S., and Diczfalusy, U., Acta Neurol. Scand., 2006, vol. 114, pp. 43–49.CrossRefGoogle Scholar
  6. 6.
    Vaya, J. and Schipper, H.M., J. Neurochem., 2007, vol. 102, pp. 1727–1737.CrossRefPubMedGoogle Scholar
  7. 7.
    Rantham P.J.P., Feist, G., Thomasson, S., Thompson, A., Schommer, E., and Ghribi, O., J. Neurochem., 2008, vol. 107, pp. 1722–1729.CrossRefGoogle Scholar
  8. 8.
    Rodríguez, I.R. and Larrayoz, I.M., J. Lipid Res., 2010, vol. 51, pp. 2847–2862.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Girao, H., Mota, M. C., Ramalho, J., and Pereira, P., Exp. Eye Res., 1998, vol. 66, pp. 645–652.CrossRefPubMedGoogle Scholar
  10. 10.
    Lemaire–Ewing, S., Prunet, C., Montange, T., Vejux, A., Berthier, A., Bessède, et al., Cell Biol.Toxicol., 2005, vol. 21 no. 2, pp. 97–114.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang, J.D., Amaral, J., Lee, J.W., and Rodriguez, I.R., PLoS One, 2014, vol. 9, no. 7. pp. 1–26.Google Scholar
  12. 12.
    Dreizen, S., Stern, M.H., and Levy, B.M., J. Dental Res., 1978, vol. 57, pp. 412–417.CrossRefGoogle Scholar
  13. 13.
    Garcia-Cruset, S., Carpenter, K.L., Guardiola, F., Stein, B.K., and Mitchinson M.J., Free Rad. Res., 2001, vol. 35, pp. 31–41.CrossRefGoogle Scholar
  14. 14.
    Moreira, E.F., Larrayoz, I.M., Lee, J.W., and Rodriguez, I.R., Invest. Ophthalmol. Visual Sci., 2009, vol. 50, pp. 523–532.CrossRefGoogle Scholar
  15. 15.
    Leonarduzzi, G., Sottero, B., and Poli G.T., J. Nut. Biochem., 2002, vol. 13, no. 13 pp. 700–710.CrossRefGoogle Scholar
  16. 16.
    Indaram, M., Ma, W., Zhao, L., Fariss, R.N., Rodriguez, I.R., and Wong, W.T., Sci. Reports, 2015, vol. 5, p. 9144.CrossRefGoogle Scholar
  17. 17.
    Vejux, A., Kahn, E., Dumas, D., Bessède, G., Ménétrier, F., Athias, A., et al., Cytometry A, 2005, vol. 64, pp. 87–100.CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang, H., Wang, Y., Lin, N., Yang, R., Qiu, W., Han, L., et al., Orphanet. J. Rare Dis., 2014, vol. 9, pp. 82–92.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Perveen, I., Sehar, S., Naz, I., Raza, M.A., Khan, A.J., and Ahmed, S., Int. J. Biosci., 2016, vol. 8, no. 4, pp. 83–93.CrossRefGoogle Scholar
  20. 20.
    Schloendorn, J., Webb, T., Kemmish, K., Hamalainen, M., Jackemeyer, D., Jiang, L., et al., Rejuvenation Res., 2009, vol. 12, no. 6, pp, 411–419.CrossRefPubMedGoogle Scholar
  21. 21.
    de Grey, A.D., Alvarez, P.J., Brady, R.O., Cuervo, A.M., Jerome, W.G., McCarty, P.L., et al., Ageing Res. Rev., 2005, vol. 4, no. 3, pp. 315–338.CrossRefPubMedGoogle Scholar
  22. 22.
    Tian, J., Gu, X., Sun, Y., Ban, X., Xiao, Y., Hu, S. and Yu, B., BMC Cardiovasc. Disorders, 2012, vol. 12. pp.70–81.CrossRefGoogle Scholar
  23. 23.
    Kostka, J.E., Prakash, O., Overholt, W.A., Green, S.J., Freyer, G., Canion, A., Delgardio, J., et al., Appl. Environ. Microbiol., 2011, vol. 77, no. 22, pp. 7962–7974.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cappello, S., Denaro, R., Genovese, M., Giuliano, L., and Yakimov, M.M., Microbiol. Res., 2006, vol. 162, no. 2, pp. 185–190.CrossRefPubMedGoogle Scholar
  25. 25.
    Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K., and Harayama S., Environ. Microbiol., 2002, vol. 4, no. 3, pp. 141–147.CrossRefPubMedGoogle Scholar
  26. 26.
    Liu, C. and Shao, Z., Int. J. Syst.Evol. Microbiol., 2005, vol. 55, pp. 1181–1186.CrossRefPubMedGoogle Scholar
  27. 27.
    Golyshin, P.N., Martins Dos Santos, V.A., Kaiser, O., Ferrer, M., Sabirova, Y.S., Lunsdorf, H., et al., J. Biotechnol., 2003, vol. 106, pp. 215–220.CrossRefPubMedGoogle Scholar
  28. 28.
    Dutta, T. K. and Harayama, S., Appl. Environ. Microbiol., 2001, vol. 67, pp. 1970–1974.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Qiao, N. and Shao, Z., Appl. Environ. Microbiol., 2010, vol. 108, pp. 1207–1216.CrossRefGoogle Scholar
  30. 30.
    Yakimov, M.M., Golyshin, P.N., Lang, S., Moore, E.R., Abraham, W.R., Lunsdorf, H., and Timmis, K.N., Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 339–348.CrossRefPubMedGoogle Scholar
  31. 31.
    Mathieu, J.M., Mohn, W.W., Eltis, L.D., LeBlanc, J.C., Stewart, G.R., Dresen, C., et al., Appl. Environ. Microbiol., 2010, vol. 76, no. 1, pp. 352–355.CrossRefPubMedGoogle Scholar
  32. 32.
    Mathieu, J., Schloendorn, J., Rittmann, B.E., and Alvarez, P.J., Biodegradation. 2008, vol. 19, no. 6. pp. 807–813.CrossRefPubMedGoogle Scholar
  33. 33.
    Ghosh S. and Khare. S.K., Chem. Phys. Lipids, 2017, vol. 207, Part B, pp. 253–259.CrossRefPubMedGoogle Scholar
  34. 34.
    Ghosh, S. and Khare, S.K., Biores. Technol., 2016, vol. 213, pp. 44–49.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. Perveen
    • 1
  • M. A. Raza
    • 2
  • S. Sehar
    • 1
  • I. Naz
    • 1
  • M. I. Memon
    • 3
  • S. Ahmed
    • 1
  1. 1.Microbiology Research Laboratory, Department of MicrobiologyQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Chemistry, Hafiz Hayyat CampusUniversity of GujratGujratPakistan
  3. 3.Department of Anesthesia and Critical CareShaheed Zulifqar Ali Bhutto Medical UniversityIslamabadPakistan

Personalised recommendations