Advertisement

Applied Biochemistry and Microbiology

, Volume 54, Issue 1, pp 58–70 | Cite as

Fermentation of Detoxified Acid-Hydrolyzed Pyrolytic Anhydrosugars into Bioethanol with Saccharomyces cerevisiae 2.399

  • Z. U. Islam
  • S. P. Klykov
  • Z. Yu
  • D. Chang
  • E. B. Hassan
  • H. Zhang
Article

Abstract

Pyrolysate obtained from the pyrolysis of waste cotton is a source of fermentable sugars that could be fermented into bioethanol fuel and other chemicals via microbial fermentation. However, pyrolysate is a complex mixture of fermentable and non-fermentable substrates causing inhibition of the microbial growth. The aim of this study was to detoxify the hydrolysate and then ferment it into bio-ethanol fuel in shake flasks and fermenter applying yeast strain Saccharomyces cerevisiae 2.399. Pyrolysate was hydrolyzed to glucose with 0.2 M sulfuric acid, neutralized with Ba(OH)2 followed by treatment with ethyl acetate and activated carbon to remove fermentation inhibitors. The effect of various fermentation parameters such as inoculum concentration, pH and hydrolysate glucose was evaluated in shake flasks for optimum ethanol fermentation. With respect to inoculum concentration, 20% v/v inoculum i.e. 8.0 × 108–1.2 × 109 cells/mL was the optimum level for producing 8.62 ± 0.33 g/L ethanol at 9 h of fermentation with a maximum yield of 0.46 g ethanol/g glucose. The optimum pH for hydrolysate glucose fermentation was found to be 6.0 that produced 8.57 ± 0.66 g/L ethanol. Maximum ethanol concentration, 14.78 g/L was obtained for 4% hydrolysate glucose concentration after 16 h of fermentation. Scale-up studies in stirred fermenter produced much higher productivity (1.32 g/L/h–1) compared to shake flask fermentation (0.92 g/L/h–1). The yield of ethanol reached a maximum of 91% and 89% of the theoretical yield of ethanol in shake flasks and fermenter, respectively. The complex of integrated models of development was applied, that has been successfully tested previously for the mathematical analysis of the fermentation processes.

Keywords

levoglucosan bioethanol hydrolysate fermentation Saccharomyces cerevisiae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schauer, J.J., Kleeman, M.J., Cass, G.R., and Simoneit, B.R., Environ. Sci. Technol., 2002, vol. 36, no. 6, pp. 1169–1180.CrossRefPubMedGoogle Scholar
  2. 2.
    Jayakody, L.N., Ferdouse, J., Hayashi, N., and Kitagaki, H., Crit. Rev. Biotechnol., 2016, vol. 36, no. 1, pp. 1–13.CrossRefGoogle Scholar
  3. 3.
    Islam, Z.U., Zhisheng, Y., Dongdong, C., and Hongxun, Z., J. Ind. Microbiol. Biot., 2015, vol. 42, no. 12, pp. 1–23.CrossRefGoogle Scholar
  4. 4.
    Chang, D., Yu, Z., Islam, Z.U., and Zhang, H., Appl. Microbiol. Biot., 2015, vol. 99, no. 9, pp. 4093–4105.CrossRefGoogle Scholar
  5. 5.
    Vicente, A., Calvo, A.I., Fernandes, A.P., Nunes, T., Monteiro, C., Almeida, S.M., and Pio, C., Atmos. Environ., 2013, vol. 71, pp. 295–303.CrossRefGoogle Scholar
  6. 6.
    Lian, J., Choi, J., Tan, Y.S., Howe, A., Wen, Z., and Jarboe, L.R., PLoS One, 2016, vol. 11, no. 2, p. e0149336.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rover, M.R., Johnston, P.A., Jin, T., Smith, R.G., Brown, R.C., and Jarboe, L., Chem. Sus. Chem., 2014, vol. 7, no. 6, pp. 1662–1668.CrossRefGoogle Scholar
  8. 8.
    Shen, Y., Jarboe, L., Brown, R., and Wen, Z., Biotechnol. Adv., 2015, vol. 33, no. 8, pp. 1799–1813.CrossRefPubMedGoogle Scholar
  9. 9.
    Patwardhan, P.R., Satrio, J.A., Brown, R.C., and Shanks, B.H., J. Anal. Appl. Pyrol., 2009, vol. 86, no. 2, pp. 323–330.CrossRefGoogle Scholar
  10. 10.
    Zhuang, X., Zhang, H., Yang, J., and Qi, H., Bioresour. Technol., 2001, vol. 79, no. 1, pp. 63–66.CrossRefPubMedGoogle Scholar
  11. 11.
    Xie, H., Zhuang, X., Bai, Z., Qi, H., and Zhang, H., World J. Microb. Biot., 2006, vol. 22, no. 9, pp. 887–892.CrossRefGoogle Scholar
  12. 12.
    Xie, H.-J., Zhuang, X.-L., Zhang, H., Bai, Z.-H., and Qi, H.-Y., FEMS Microbiol. Lett., 2005, vol. 251, no. 2, pp. 313–319.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhuang, X. and Zhang, H., Protein Expres. Purif., 2002, vol. 26, no. 1, pp. 71–81.CrossRefGoogle Scholar
  14. 14.
    Ning, J., Yu, Z., Xie, H., Zhang, H., Zhuang, G., Bai, Z., Yang, S., and Jiang, Y., World J. Microb. Biot., 2008, vol. 24, no. 1, pp. 15–22.CrossRefGoogle Scholar
  15. 15.
    Yu, Z. and Zhang, H., Biomass Bioenerg., 2003, vol. 24, no. 3, pp. 257–262.CrossRefGoogle Scholar
  16. 16.
    Yu, Z. and Zhang, H., Bioresour. Technol., 2004, vol. 93, no. 2, pp. 199–204.CrossRefPubMedGoogle Scholar
  17. 17.
    Lian, J., Chen, S., Zhou, S., Wang, Z., O’Fallon, J., Li, C.-Z., and Garcia-Perez, M., Bioresour. Technol., 2010, vol. 101, no. 24, pp. 9688–9699.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang, H., Livingston, D., Srinivasan, R., Li, Q., Steele, P., and Yu, F., Appl. Biochem. Biotech., 2012, vol. 168, no. 6, pp. 1568–1583.CrossRefGoogle Scholar
  19. 19.
    Lian, J., Garcia–Perez, M., and Chen, S., Bioresour. Technol., 2013, vol. 133, pp. 183–189.CrossRefPubMedGoogle Scholar
  20. 20.
    Sukhbaatar, B., Li, Q., Wan, C, Yu, F., Hassan, E.-B., and Steele, P., Bioresour. Technol., 2014, vol. 161, pp. 379–384.CrossRefPubMedGoogle Scholar
  21. 21.
    Luque, L., Westerhof, R., Van Rossum, G., Oudenhoven, S., Kersten, S., Berruti, F., and Rehmann, L., Bioresour. Technol., 2014, vol. 161, pp. 20–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Klykov, S. and Derbyshev, V., Biotekhnologia, 2009, vol. 5, pp. 80–89.Google Scholar
  23. 23.
    Klykov, S., Kurakov, V., Vilkov, V., Demidyuk, I., Gromova, T.Y., and Skladnev, D., Biofabrication, 2011, vol. 3, pp. 4.CrossRefGoogle Scholar
  24. 24.
    Derbyshev, V., Klykov, S., Glukhov, N., and Shcherbakov, G.Y., Biotekhnologia, 2001, vol. 2, p. 89.Google Scholar
  25. 25.
    Jonsson, L.J. and Martin, C., Bioresour. Technol., 2016, vol. 199, no., pp. 103–112.CrossRefPubMedGoogle Scholar
  26. 26.
    Ding, M.–Z., Wang, X., Yang, Y., and Yuan, Y.-L., OMICS, 2011, vol. 15, no. 10, pp. 647–653.CrossRefPubMedGoogle Scholar
  27. 27.
    Liang, Y., Zhao, X., Chi, Z., Rover, M., Johnston, P., Brown, R., Jarboe, L., and Wen, Z., Bioresour. Technol., 2013, vol. 133, pp. 500–506.CrossRefPubMedGoogle Scholar
  28. 28.
    Carrau, F., Medina, K., Farina, L., Boido, E., and Dellacassa, E., Int. J. Food Microbiol., 2010, vol. 143, no. 1, pp. 81–85.CrossRefPubMedGoogle Scholar
  29. 29.
    Arshad, M., Khan, Z., Shah, F., and Rajoka, M., Lett. Appl. Microbiol., 2008, vol. 47, no. 5, pp. 410–414.CrossRefPubMedGoogle Scholar
  30. 30.
    Laluce, C, Tognolli, J.O., De Oliveira, K.F., Souza, C.S., and Morais, M.R., Appl. Microbiol. Biot., 2009, vol. 83, no. 4, pp. 627–637.CrossRefGoogle Scholar
  31. 31.
    Kasemets, K., Nisamedtinov, I., Laht, T.–M., Abner, K., and Paalme, T., Antonie van Leeuwenhoek, 2007, vol. 92, no. 1, pp. 109–128.CrossRefPubMedGoogle Scholar
  32. 32.
    Lin, Y., Zhang, W., Li, C, Sakakibara, K., Tanaka, S., and Kong, H., Biomass Bioenerg., 2012, vol. 47, pp. 395–401.CrossRefGoogle Scholar
  33. 33.
    Narendranath, N.V. and Power, R., Appl. Environ. Microbiol., 2005, vol. 71, no. 5, pp. 2239–2243.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dada, O., Kalil, M., and Yusoff, W., Bacteriol. J., 2012, vol. 2, no., pp. 79–89.CrossRefGoogle Scholar
  35. 35.
    Sanchez, O.J. and Cardona, C.A., Bioresour. Technol., 2008, vol. 99, no. 13, pp. 5270–5295.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • Z. U. Islam
    • 1
  • S. P. Klykov
    • 2
  • Z. Yu
    • 1
  • D. Chang
    • 1
  • E. B. Hassan
    • 3
  • H. Zhang
    • 1
  1. 1.College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Alpha Integrum Ltd.Protvino, Moscow oblastRussia
  3. 3.Department of Sustainable BioproductsMississippi State UniversityMississippi StateUSA

Personalised recommendations