Advertisement

Applied Biochemistry and Microbiology

, Volume 52, Issue 5, pp 465–470 | Cite as

Interactions of chitosan and its derivatives with cells (review)

  • A. A. Zubareva
  • E. V. Svirshchevskaya
Article

Abstract

Mechanisms of interaction between chitosan, various macromolecules or drug delivery systems and mammalian cells are reviewed. Modernly the role of different physicochemical properties of chitosan and chitosan nanoparticles on the mechanisms of cell bunding, endocytosis and redistribution are poorly understood.

Keywords

chitosan chitosan derivatives cell tight junctions endocytosis flow cytometry confocal microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Y. and Liu, L., Adv. Drug Deliv. Rev., 2012, vol. 64, no. 7, pp. 640–665.PubMedCrossRefGoogle Scholar
  2. 2.
    Phyu, P., Shin-ya, Y., Hong, K., and Kajiuchi, T., Cell. Dev. Biol., 2003, vol. 53, no. 3, pp. 305–310.Google Scholar
  3. 3.
    Le Tien, C., Lacroix, M., Ispas-Szabo, P., and Mateescu, M.-A., J. Control. Release, 2003, vol. 93, no. 1, pp. 1–13.PubMedCrossRefGoogle Scholar
  4. 4.
    Nasti, A., Zaki, N.M., De Leonardis, P., Ungphaiboon, S., Sansongsak, P., Rimoli, M.G., and Tirelli, N., Pharm. Res., 2009, vol. 26, no. 8, pp. 1918–1930.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhattarai, N., Gunn, J., and Zhang, M., Adv. Drug Deliv. Rev., 2010, vol. 62, no. 1, pp. 83–99.PubMedCrossRefGoogle Scholar
  6. 6.
    Harding, S.E., Biochem. Soc. Trans., 2003, vol. 31, no. 5, pp. 1036–1041.PubMedCrossRefGoogle Scholar
  7. 7.
    Sogias, I.A., Williams, A.C., and Khutoryanskiy, V.V., Biomacromolecules, 2008, vol. 9, no. 7, pp. 1837–1842.PubMedCrossRefGoogle Scholar
  8. 8.
    Schneeberger, E.E. and Lynch, R.D., Am. J. Physiol. Cell Physiol., 2004, vol. 286, no. 6, pp. 1213–1228.CrossRefGoogle Scholar
  9. 9.
    Dodane, V., Khan, M.A., and Merwin, J.R., Int. J. Pharm., 1999, vol. 182, no. 1, pp. 21–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Vllasaliu, D., Exposito-Harris, R., Heras, A., Casettari, L., Garnett, M., Illum, L., and Stolnik, S., Int. J. Pharm., 2010, vol. 400, nos. 1–2, pp. 183–193.PubMedCrossRefGoogle Scholar
  11. 11.
    Deli, M.A., Biochim. Biophys. Acta. Biomembr., 2009, vol. 1788, no. 4, pp. 892–910.CrossRefGoogle Scholar
  12. 12.
    Hsu, L.-W., Ho, Y.-C., Chuang, E.-Y., Chen, C.-T., Juang, J.-H., Su, F.-Y., Hwang, S.-M., and Sung, H.-W., Biomaterials, 2013, vol. 34, no. 3, pp. 784–793.PubMedCrossRefGoogle Scholar
  13. 13.
    Yeh, T.H., Hsu, L.W., Tseng, M.T., Lee, P.L., Sonjae, K., Ho, Y.C., and Sung, H.W., Biomaterials, 2011, vol. 32, no. 26, pp. 6164–6173.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang, J., Zhu, X., Jin, Y., Shan, W., and Huang, Y., Mol. Pharm., 2014, vol. 11, no. 5, pp. 1520–1532.PubMedCrossRefGoogle Scholar
  15. 15.
    Smith, J.M., Dornish, M., and Wood, E.J., Biomaterials, 2005, vol. 26, no. 16, pp. 3269–3276.PubMedCrossRefGoogle Scholar
  16. 16.
    Kaiser, M., Pereira, S., Pohl, L., Ketelhut, S., Kemper, B., Gorzelanny, C., Galla, H.-J., Moerschbacher, B.M., and Goycoolea, F.M., Sci. Rep., 2015, vol. 5, no. 1, pp. 1–14.Google Scholar
  17. 17.
    Gulati, N., Nagaich, U., and Saraf, S.A., Sci. Pharm., 2013, vol. 81, no. 3, pp. 843–854.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yuan, X., Yang, X., Cai, D., Mao, D., Wu, J., Zong, L., and Liu, J., Vaccine, 2008, vol. 26, nos. 29–30, pp. 3727–3734.PubMedCrossRefGoogle Scholar
  19. 19.
    Illum, L., J. Control. Release, 2012, vol. 161, no. 2, pp. 254–263.PubMedCrossRefGoogle Scholar
  20. 20.
    Zaki, N.M. and Hafez, M.M., AAPS Pharm. Sci. Tech., 2012, vol. 13, no. 2, pp. 411–421.CrossRefGoogle Scholar
  21. 21.
    Hu, C., Chiang, C., Hong, P., and Yeh, M., Int. J. Nanomedicine, 2012, vol. 7, no. 18, pp. 4861–4872.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Popova, N.V., Deev, I.E., and Petrenko, A.G., Acta Naturae, 2013, vol. 3, no. 1, pp. 66–77.Google Scholar
  23. 23.
    Sahay, G., Alakhova, D.Y., and Kabanov, A.V., J. Control. Release, 2010, vol. 145, no. 3, pp. 182–195.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Douglas, K., Eur. J. Pharm. Biopharm., 2008, vol. 68, no. 3, pp. 676–687.PubMedCrossRefGoogle Scholar
  25. 25.
    Zaki, N.M., Nasti, A., and Tirelli, N., Macromol. Biosci., 2011, vol. 11, no. 12, pp. 1747–1760.PubMedCrossRefGoogle Scholar
  26. 26.
    Trif, M., Florian, P.E., Roseanu, A., Moisei, M., Craciunescu, O., Astete, C.E., and Sabliov, C.M., J. Biomed. Mater. Res. A, 2015, vol. 103, no. 11, pp. 3599–3611.PubMedCrossRefGoogle Scholar
  27. 27.
    Yoon, H.Y., Koo, H., Choi, K.Y.K., Lee, S.J., Kim, K., Kwon, I.C., Leary, J.F., Park, K., Yuk, S.H., Park, J.H., and Choi, K.Y.K., Biomaterials, 2012, vol. 33, no. 15, pp. 3980–3989.PubMedCrossRefGoogle Scholar
  28. 28.
    Surace, C., Arpicco, S., Dufaÿ-Wojcicki, A., Marsaud, V., Bouclier, C., Clay, D., Cattel, L., Renoir, J.-M., and Fattal, E., Mol. Pharm., 2009, vol. 6, no. 4, pp. 1062–1073.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang, M., Ma, Z., Khor, E., and Lim, L., Pharm. Res., 2002, vol. 19, no. 10, pp. 1488–1494.PubMedCrossRefGoogle Scholar
  30. 30.
    Contreras-ruiz, L., De Fuente, M., Párraga, J.E., López-garcía, A., Fernández, I., Seijo, B., Sánchez, A., Calonge, M., and Diebold, Y., Mol. Vis., 2011, vol. 17, no. 1, pp. 279–290.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Carver, L.A. and Schnitzer, J.E., Nat. Rev. Cancer, 2003, vol. 3, no. 8, pp. 571–581.PubMedCrossRefGoogle Scholar
  32. 32.
    Kou, L., Sun, J., Zhai, Y., and He, Z., Asian J. Pharm. Sci., 2013, vol. 8, no. 1, pp. 1–10.CrossRefGoogle Scholar
  33. 33.
    Shcherbinina, T.S., Zubareva, A.A., Varlamov, V.P., and Svirshchevskaya, E.V., Ross. Immunol. Zh., 2015, vol. 9, no. 2(1), pp. 516–518.Google Scholar
  34. 34.
    Nam, H.Y., Kwon, S.M., Chung, H., Lee, S.-Y., Kwon, S.-H., Jeon, H., Kim, Y., Park, J.H., Kim, J., Her, S., Oh, Y.-K., Kwon, I.C., Kim, K., and Jeong, S.Y., J. Control. Release, 2009, vol. 135, no. 3, pp. 259–267.PubMedCrossRefGoogle Scholar
  35. 35.
    Garaiova, Z., Strand, S.P., Reitan, N.K., Lélu, S., Størset, S.Ø., Berg, K., Malmo, J., Folasire, O., Bjørkøy, A., and Davies, C.D.L., Int. J. Biol. Macromol., 2012, vol. 51, no. 5, pp. 1043–1051.PubMedCrossRefGoogle Scholar
  36. 36.
    Kralj, S., Rojnik, M., Romih, R., Jagodic, M., Kos, J., and Makovec, D., J. Nanoparticle Res., 2012, vol. 14, no. 10, pp. 1–14.CrossRefGoogle Scholar
  37. 37.
    Yue, Z., Wei, W., Lv, P., Yue, H., Wang, L., and Su, Z., Biomacromolecules, 2011, vol. 12, no. 7, pp. 2440–2446.PubMedCrossRefGoogle Scholar
  38. 38.
    Zubareva, A.A., Shcherbinina, T.S., Varlamov, V.P., and Svirshchevskaya, E.V., Nanoscale, 2015, vol. 7, no. 17, pp. 7942–7952.PubMedCrossRefGoogle Scholar
  39. 39.
    Fröhlich, E., Int. J. Nanomedicine, 2012, vol. 7, no. 11, pp. 5577–5591.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    He, C., Hu, Y., Yin, L., Tang, C., and Yin, C., Molecules, 2013, vol. 18, no. 1, pp. 1015–1035.CrossRefGoogle Scholar
  41. 41.
    Feng, J., Zhao, L., and Yu, Q., R, Biochem. Biophys. Res. Commun., 2004, vol. 317, no. 2, pp. 414–420.CrossRefGoogle Scholar
  42. 42.
    Feng, G., Jiang, Q., Xia, M., Lu, Y., Qiu, W., Zhao, D., Lu, L., Peng, G., and Wang, Y., PLoS One, 2013, vol. 8, no. 4, pp. 61135–61145.CrossRefGoogle Scholar
  43. 43.
    Lubben, I.M.VanDer., Verhoef, J.C., Borchard, G., and Junginger, H.E., Adv. Drug Deliv. Rev., 2001, vol. 52, no. 2, pp. 139–144.PubMedCrossRefGoogle Scholar
  44. 44.
    Verma, A. and Stellacci, F., Small, 2010, vol. 6, no. 1, pp. 12–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Nel, A.E., Mädler, L., Velegol, D., Xia, T.V., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., and Thompson, M., Nature, 2009, vol. 8, no. 7, pp. 543–557.CrossRefGoogle Scholar
  46. 46.
    Yue, Z., Wei, W., Lv, P., Yue, H., Wang, L., and Su, Z., Biomacromolecules, 2011, vol. 12, no. 7, pp. 2440–2446.PubMedCrossRefGoogle Scholar
  47. 47.
    Bakhru, H., Altiok, E., Highley, C., Delubac, D., Suhan, J., Hitchens, T.K., Ho, C., and Zappe, S., Int. J. Nanomedicine, 2012, vol. 7, no. 10, pp. 4613–4623.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chiu, Y., Ho, Y., Chen, Y., Peng, S., Ke, C., Chen, K., Mi, F., and Sung, H., J. Control. Release, 2010, vol. 146, no. 1, pp. 152–159.PubMedCrossRefGoogle Scholar
  49. 49.
    He, C., Hu, Y., Yin, L., Tang, C., and Yin, C., Biomaterials, 2010, vol. 31, no. 13, pp. 657–666.CrossRefGoogle Scholar
  50. 50.
    Boyles, M.S.P., Kristl, T., Andosch, A., Zimmermann, M., Tran, N., Casals, E., Himly, M., Puntes, V., Huber, C.G., Lütz-Meindl, U., and Duschl, A., J. Nanobiotechnology, 2015, vol. 13, no. 1, pp. 84–104.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Jahanbin, T., Sauriat-Dorizon, H., Spearman, P., Benderbous, S., and Korri-Youssoufi, H., Mater. Sci. Eng. C. Mater. Biol. Appl., 2015, vol. 52, pp. 325–332.PubMedCrossRefGoogle Scholar
  52. 52.
    Iversen, T.G., Skotland, T., and Sandvig, K., Nano Today, 2011, vol. 6, no. 2, pp. 176–185.CrossRefGoogle Scholar
  53. 53.
    Huth, U.S., Schubert, R., and Peschka-Süss, R., J. Control. Release, 2006, vol. 110, no. 3, pp. 490–504.PubMedCrossRefGoogle Scholar
  54. 54.
    Loh, J.W., Yeoh, G., Saunders, M., and Lim, L.-Y., Toxicol. Appl. Pharmacol., 2010, vol. 249, no. 2, pp. 148–157.PubMedCrossRefGoogle Scholar
  55. 55.
    Nimesh, S., Thibault, M.M., Lavertu, M., and Buschmann, M.D., Mol. Biotechnol., 2010, vol. 46, no. 2, pp. 182–196.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Morris, V.B. and Sharma, C.P., Int. J. Pharm., 2010, vol. 389, nos. 1–2, pp. 176–185.PubMedCrossRefGoogle Scholar
  57. 57.
    Torrano, A.A., Blechinger, J., Osseforth, C., Argyo, C., Reller, A., Bein, T., Michaelis, J., and Bräuchle, C., Nanomedicine, 2013, vol. 8, no. 11, pp. 1815–1828.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Institute of Bioengineering, Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations