Advertisement

Applied Biochemistry and Microbiology

, Volume 52, Issue 5, pp 483–490 | Cite as

Analysis of toxicity and biocompatibility of chitosan derivatives with different physico-chemical properties

  • E. V. Svirshchevskaya
  • A. A. Zubareva
  • A. A. Boyko
  • O. A. Shustova
  • M. V. Grechikhina
  • B. Ts. Shagdarova
  • V. P. Varlamov
Article

Abstract

A comparative study of the toxicity and hemocompatibility of chitosan and its derivatives with different acetylation degrees, molecular masses, charges, and hydrophobicity has been performed. It has been shown that only positively charged chitosan derivatives activate platelets and suppress cell proliferation, regardless of the acetylation degree, molecular mass, and hydrophobicity. Chitosan quaternization decreases toxicity at a low degree of substitution and abruptly increases it at a high one. Negatively charged chitosan derivatives were nontoxic and compatible with blood components. It was concluded that the toxicity of chitosan and its derivatives is defined by their charge and solubility at a neutral pH.

Keywords

chitosan chitosan derivatives cytotoxicity hemocompatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patrulea, V., Ostafe, V., Borchard, G., and Jordan, O., Eur. J. Pharm. Biopharm., 2015, vol. 97, pp. 417–426.CrossRefPubMedGoogle Scholar
  2. 2.
    Junter, G.-A., Thébault, P., and Lebrun, L., Acta Biomater., 2015, vol. 30, pp. 13–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D.A., and Quiñones-Olvera, L.F., Biomed. Res. Int., 2015, vol. 2015, pp. 1–15.CrossRefGoogle Scholar
  4. 4.
    Ahmadi, F., Oveisi, Z., Samani, S.M., and Amoozgar, Z., Res. Pharm. Sci., vol. 10, no. 1, pp. 1–16.Google Scholar
  5. 5.
    Ahmed, T.A. and Aljaeid, B.M., Drug Des. Devel. Ther., 2016, vol. 10, pp. 483–507.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Swierczewska, M., Han, H.S., Kim, K., Park, J.H., and Lee, S., Adv. Drug Deliv. Rev., 2015, vol. 99, pp. 70–84.CrossRefPubMedGoogle Scholar
  7. 7.
    Younes, I., Frachet, V., Rinaudo, M., Jellouli, K., and Nasri, M., Int. J. Biol. Macromol., 2016, vol. 84, pp. 200–207.CrossRefPubMedGoogle Scholar
  8. 8.
    Wiegand, C., Winter, D., and Hipler, U.-C., Skin Pharmacol. Physiol., 2010, vol. 23, no. 3, pp. 164–170.CrossRefPubMedGoogle Scholar
  9. 9.
    Fernandes, J.C., Borges, M., Nascimento, H., Bronze-da-Rocha, E., Ramos, O.S., Pintado, M.E., Malcata, F.X., and Santos-Silva, A., Int. J. Biol. Macromol., 2011, vol. 49, no. 3, pp. 433–438.CrossRefPubMedGoogle Scholar
  10. 10.
    Verheul, R.J., Amidi, M., van Steenbergen, M.J., van Riet, E., Jiskoot, W., and Hennink, W.E., Biomaterials, 2009, vol. 30, no. 18, pp. 3129–3135.CrossRefPubMedGoogle Scholar
  11. 11.
    Felice, F., Zambito, Y., Belardinelli, E., Fabiano, A., Santoni, T., and Di Stefano, R., Int. J. Biol. Macromol., 2015, vol. 76, pp. 236–241.CrossRefPubMedGoogle Scholar
  12. 12.
    Almada, M., Burboa, M.G., Robles, E., Gutierrez, L.E., Valdes, M.A., and Juarez, J., Curr. Top. Med. Chem., 2014, vol. 14, no. 6, pp. 692–701.CrossRefPubMedGoogle Scholar
  13. 13.
    Rogozhin, S.V. and Gamzazade, A.I., Polym. Sci. U.S.S.R., 1988, vol. 30, no. 3, pp. 607–614.CrossRefGoogle Scholar
  14. 14.
    Hirano, S., Kondo, Y., and Fujii, K., Carbohydr. Res., 1985, vol. 144, no. 2, pp. 338–341.CrossRefGoogle Scholar
  15. 15.
    Zubareva, A.A., Shcherbinina, T.S., Varlamov, V.P., and Svirshchevskaya, E.V., Nanoscale, 2015, vol. 7, no. 17, pp. 7942–7952.CrossRefPubMedGoogle Scholar
  16. 16.
    Shagdarova, B.Ts., Il’ina, A.V., and Varlamov, V.P., Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 222–225.CrossRefGoogle Scholar
  17. 17.
    Mosmann, T., J. Immunol. Methods, 1983, vol. 65, pp. 55–63.CrossRefPubMedGoogle Scholar
  18. 18.
    van Velzen, J.F., Laros-van Gorkom B.A.P., Pop, G.A.M., and van Heerde, W.L., Thromb. Res., 2012, vol. 130, no. 1, pp. 92–98.CrossRefPubMedGoogle Scholar
  19. 19.
    Dobrovolskaia, M.A., Clogston, J.D., Neun, B.W., Hall, J.B., Patri, A.K., and Mcneil, S.E., Nano Lett., 2008, vol. 8, no. 8, pp. 2180–2187.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Peng, Z., Wang, L., Du, L., Guo, S.-R., Wang, X.-Q., and Tang, T.-T., Carbohydr. Res., 2010, vol. 81, no. 2, pp. 275–283.CrossRefGoogle Scholar
  21. 21.
    Hattori, H. and Ishihara, M., Biomed. Mater., 2015, vol. 10, no. 1, p. 015014.CrossRefPubMedGoogle Scholar
  22. 22.
    Hsu, L.-W., Ho, Y.-C., Chuang, E.-Y., Chen, C.-T., Juang, J.-H., Su, F.-Y., Hwang, S.-M., and Sung, H.-W., Biomaterials, 2013, vol. 34, no. 3, pp. 784–793.CrossRefPubMedGoogle Scholar
  23. 23.
    Duceppe, N. and Tabrizian, M., Expert Opin. Drug Deliv., 2010, vol. 7, no. 10, pp. 1191–1207.CrossRefPubMedGoogle Scholar
  24. 24.
    Vinsova, J. and Vavrikova, E., Curr. Pharm. Des., 2008, vol. 14, no. 13, pp. 1311–1326.CrossRefPubMedGoogle Scholar
  25. 25.
    Blau, S., Jubeh, T.T., Haupt, S.M., and Rubinstein, A., Crit. Rev. Ther. Drug Carrier Syst., 2000, vol. 17, no. 5, pp. 425–465.CrossRefPubMedGoogle Scholar
  26. 26.
    Sujima, AnbuA., Velmurugan, P., Lee, J.-H., Oh, B.-T., and Venkatachalam, P., Int. J. Biol. Macromol., 2016, vol. 88, pp. 18–26.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • E. V. Svirshchevskaya
    • 1
  • A. A. Zubareva
    • 2
  • A. A. Boyko
    • 1
  • O. A. Shustova
    • 1
  • M. V. Grechikhina
    • 1
  • B. Ts. Shagdarova
    • 2
  • V. P. Varlamov
    • 2
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institute of BioengineeringRussian Academy of SciencesMoscowRussia

Personalised recommendations