Applied Biochemistry and Microbiology

, Volume 52, Issue 4, pp 445–451 | Cite as

Neutralization of anticoagulant activity of heparin by N-[(2-hydroxy-3-trimethylammonium) propyl] chloride derivatives of chitosan

  • B. Ts. Shagdarova
  • N. N. Drozd
  • A. V. Il’ina
  • Yu. S. Logvinova
  • V. P. Varlamov


Alkylated derivatives of low molecular weight chitosan with different substitution degrees of 98, 40, and 9% (I, II, and III respectively) have been synthesized. The structure of the obtained derivatives was defined by spectral assays (IR-spectroscopy and proton magnetic resonance). Chitosan derivatives were characterized with positive zeta-potential (33–51 mV) and solubility from 2 to 100 mg/mL in pH 7.4 and 25°C. It was shown that, at a concentration of 0.0014–0.0029 mg/mL, derivative I, as well as protamine sulfate, could be used to neutralize the anticoagulant activity of unfractionated or low molecular weight heparin. At a concentration of 0.0029–0.58 mg/mL, derivative I enhanced platelet aggregation, which would be necessary when hemostatic compounds or materials were used. Derivatives II and III enhanced platelet aggregation to a lesser extent.


low molecular weight chitosan quaternized chitosan derivatives heparin protamine sulfate aIIa activity aXa activity procoagulant activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Veen, J.J., Maclean, R.M., Hampton, K.K., Laidlaw, S., Kitchen, S., Toth, P., and Makris, M., Blood Coagul. Fibrinolysis, vol. 22, no. 7, pp. 565–570.Google Scholar
  2. 2.
    Wolzt, M., Wetermann, A., Niezpaur-Los, M., Schneider, B., Fassolt, A., Lechner, K., Eichler, H.G., and Kyrle, P.A., Thromb. Haemost., 1995, vol. 73, no. 3, pp. 439–443.PubMedGoogle Scholar
  3. 3.
    Chu, Y.Q., Cai, L.J., Jiang, D., Jia, D., Yan, S.Y., and Wang, Y.Q., Clin. Ther., 2010, vol. 32, no. 10, pp. 1729–1732.CrossRefPubMedGoogle Scholar
  4. 4.
    Ziebarth, J. and Wang, Y., Biophys. J., 2009, vol. 97, no. 7, pp. 1971–1983.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Samal, S.K., Dash, M., van Vlierberghe, S., Kaplan, D.L., Chiellini, E., van Blitterswijk, C., and Moroni, L., Dubruelp, Chem. Soc. Rev., 2012, vol. 41, no. 21, pp. 7147–7194.CrossRefGoogle Scholar
  6. 6.
    Kalaska, B., Sokolowska, E., Kaminski, K., Szczubialka, K., Kramkowski, K., Mogielnicki, A., Nowakowska, M., and Buczko, W., Eur. J. Pharmacol., 2012, vol. 686, nos. 1–3, pp. 81–89.CrossRefPubMedGoogle Scholar
  7. 7.
    Kaminski, K., Szczubialka, K., Zazakowny, K., Lach, R., and Nowakowska, M., J. Med. Chem., 2010, vol. 53, no. 10, pp. 4141–4147.CrossRefPubMedGoogle Scholar
  8. 8.
    Shagdarova, B.Ts., Il’ina A.V., Varlamov V.P, Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 222–225.CrossRefGoogle Scholar
  9. 9.
    Lim, S-H. and Hudson, S.M., Carbohydr. Res., 2004, vol. 339, no. 2, pp. 313–319.CrossRefPubMedGoogle Scholar
  10. 10.
    Qin, C., Xiao, Q., Li, H., Fang, M., Liu, Y., Chen, X., and Li, Q., Int. J. Biol. Macromol., 2004, vol. 34, nos. 1–2, pp. 121–126.CrossRefPubMedGoogle Scholar
  11. 11.
    Teien, A.N. and Lie, M., Thromb. Res., 1975, vol. 7, no. 5, pp. 777–788.CrossRefPubMedGoogle Scholar
  12. 12.
    Yin, E., Wessler, S., and Butler, J., J. Lab. Clin. Med., 1973, vol. 81, no. 2, pp. 298–310.PubMedGoogle Scholar
  13. 13.
    Born, G.V., Nature, 1962, vol. 194, no. 9, pp. 927–929.CrossRefPubMedGoogle Scholar
  14. 14.
    Dash, B., Rethore, G., Monaghan, M., Fitzgerald, K., Gallagher, W., and Pandit, A., Biomaterials, 2010, vol. 31, no. 32, pp. 8188–8197.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaminski, K., Plonka, M., Ciejka, J., Szczubialka, K., Nowakowska, M., Lorkowska, B., Korbut, R., and Lach, R., J. Med. Chem., 2011, vol. 54, no. 19, pp. 6586–6596.CrossRefPubMedGoogle Scholar
  16. 16.
    Cumming, A.M., Jones, G.R., Wensley, R.T., and Cundall, R.B., Thromb. Res., 1986, vol. 41, no. 1, pp. 43–56.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • B. Ts. Shagdarova
    • 1
  • N. N. Drozd
    • 2
  • A. V. Il’ina
    • 1
  • Yu. S. Logvinova
    • 2
  • V. P. Varlamov
    • 1
  1. 1.Institute of BioengineeringResearch Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  2. 2.Research Center for HematologyMinistry of HealthMoscowRussia

Personalised recommendations