Advertisement

Applied Biochemistry and Microbiology

, Volume 52, Issue 2, pp 210–215 | Cite as

Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling

  • T. O. Yastreb
  • Yu. E. Kolupaev
  • A. A. Lugovaya
  • A. P. Dmitriev
Article

Abstract

The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.

Keywords

Arabidopsis thaliana adaptation flavonoids jasmonic acid protein JIN1/MYC2 proline salt stress signaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasyukova, N.I. and Ozeretskovskaya, O.L., Russ. J. Plant Physiol., 2009, vol. 56, no. 5, pp. 581–590.CrossRefGoogle Scholar
  2. 2.
    Wasternack, C. and Hause, B., Ann. Bot., 2013, vol. 111, no. 6, pp. 1021–1058.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dombrecht, B., Xue, G.P., Sprague, S.J., Kirkegaard, J.A., Ross, J.J., Reid, J.B., Fitt, G.P., Sewelam, N., Schenk, P.M., Manners, J.M., and Kazan, K., Plant Cell, 2007, vol. 19, no. 7, pp. 2225–2245.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Guo, J., Pang, Q., Wang, L., Yu, P., Li, N., and Yan, X., Proteome Sci., 2012, vol. 10, no. 1, pp. 1–13.CrossRefGoogle Scholar
  5. 5.
    Laurie-Berry, N., Joardar, V., Street, I.H., and Kunkel, B.N., Mol. Plant Microbe Interact., 2006, vol. 19, no. 7, pp. 789–800.CrossRefPubMedGoogle Scholar
  6. 6.
    Pedranzani, H., Racagni, G., Alemano, S., Miersch, O., Ramirez, I., Pena-Cortes, H., Taleisnik, E., Machado-Domenech, E., and Abdala, G., Plant Growth Regul., 2003, vol. 41, no. 2, pp. 149–158.CrossRefGoogle Scholar
  7. 7.
    Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M., and Close, T.J., Plant Cell Environ., 2007, vol. 30, no. 4, pp. 410–421.CrossRefPubMedGoogle Scholar
  8. 8.
    Shakirova, F.M., Sakhabutdinova, A.R., Ishdavletova, R.S., and Lastochkina, O.V., Agrokhimiya, 2010, no. 7, pp. 26–26.Google Scholar
  9. 9.
    Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N.N., J. Exp. Bot., 2011, vol. 62, no. 14, pp. 4875–4887.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ramegowda, V., Senthil-Kumar, M., Udayakumar, M., and Mysore, K.S., BMC Plant Biol., 2013, vol. 13 (193). doi: 10.1186/1471-2229-13-193Google Scholar
  11. 11.
    Ismail, A., Riemann, M., and Nick, P., J. Exp. Bot., 2012, vol. 63, no. 5, pp. 2127–2139.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ramirez, V., Coego, A., Lopez, A., Agorio, A., Flors, V., and Vera, P., Plant J., 2009, vol. 58, no. 4, pp. 578–591.CrossRefPubMedGoogle Scholar
  13. 13.
    Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K., Plant Cell, 2003, vol. 15, no. 1, pp. 63–78.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ton, J., Flors, V., and Mauch-Mani, B., Trends Plant Sci., 2009, vol. 14, no. 6, pp. 310–317.CrossRefPubMedGoogle Scholar
  15. 15.
    Lackman, P., Gonzalez-Guzman, M., Tilleman, S., Carqueijeiro, I., Perez, A.C., Moses, T., Seo, M., Kanno, Y., Hakkinen, S.T., Montagu, M.C.E.V., Thevelein, J.M., Maaheimo, H., Oksman-Caldentey, K.M., Rodriguez, P.L., Rischer, H., and Goossens, A., Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 14, pp. 5891–5896.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kavi Kishor, P.B. and Sreenivasulu, N., Plant Cell Environ., 2014, vol. 37, no. 2, pp. 300–311.CrossRefPubMedGoogle Scholar
  17. 17.
    Carcia, A.B., Engler, J.A., Iyer, S., Gerats, T., Van Montagu, M., and Caplan, A.B., Plant Physiol., 1997, vol. 115, no. 1, pp. 159–169.Google Scholar
  18. 18.
    Khlestkina, E.K., Cereal Res. Commun., 2013, vol. 41, no. 2, pp. 185–198.CrossRefGoogle Scholar
  19. 19.
    Iqbal, N., Umar, S., Khan, N.A., and Khan, M.I.R., Environ. Exp. Bot., 2014, vol. 100, no. 1, pp. 34–42.CrossRefGoogle Scholar
  20. 20.
    Sheteawi, S.A., Int. J. Agri. Biol., 2007, vol. 9, no. 3, pp. 473–478.Google Scholar
  21. 21.
    Zhao, M.L., Wang, J.N., Shan, W., Fan, J.G., Kuang, J.F., Wu, K.Q., Li, X.P., Chen, W.X., He, F.Y., Chen, J.Y., and Lu, W.J., Plant Cell Environ., 2013, vol. 36, no. 1, pp. 30–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Li, T., Jia, K.P., Lian, H.L., Yang, X., Li, L., and Yang, H.Q., Biochem. Biophys. Res. Commun., 2014, vol. 454, no. 1, pp. 78–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Yastreb, T.O., Kolupaev, Yu.E., Shvidenko, N.V., Lugovaya, A.A., and Dmitriev, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 4, pp. 451–454.CrossRefGoogle Scholar
  24. 24.
    Gibeaut, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Plant Physiol., 1997, vol. 115, no. 2, pp. 317–319.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Semchuk, N.M., Vasylyk, Yu.V., Lushchak, Ok.V., and Lushchak, V.I., Ukr. Biokhim. Zh., 2012, vol. 84, no. 4, pp. 41–48.Google Scholar
  26. 26.
    Merzlyak, M.N., Pogosyan, S.I., Yuferova, S.G., and Shevyreva, V.A., Biol. Nauki, 1978, no. 9, pp. 86–86.Google Scholar
  27. 27.
    Zhao, K., Fan, H., Zhou, S., and Song, J., Plant Sci., 2003, vol. 165, no. 4, pp. 837–844.CrossRefGoogle Scholar
  28. 28.
    Kolupaev, Yu.E., Ryabchun, N.I., Vainer, A.A., Yastreb, T.O., and Oboznyi, A.I., Russ. J. Plant Physiol., 2015, vol. 62, no. 4, pp. 499–506.CrossRefGoogle Scholar
  29. 29.
    Bates, L.S., Walden, R.P., and Tear, G.D., Plant Soil, 1973, vol. 39, no. 1, pp. 205–210.CrossRefGoogle Scholar
  30. 30.
    Nogues, S. and Bakern, R., J. Exp. Bot., 2000, vol. 51, no. 348, pp. 1309–1317.CrossRefPubMedGoogle Scholar
  31. 31.
    Pietrini, F. and Massacci, A., Photosynth. Res., 1998, vol. 58, no. 3, pp. 213–219.CrossRefGoogle Scholar
  32. 32.
    Munns, R. and Tester, M., Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.CrossRefPubMedGoogle Scholar
  33. 33.
    Havaux, M. and Kloppstech, K., Planta, 2001, vol. 213, no. 6, pp. 953–966.CrossRefGoogle Scholar
  34. 34.
    Gould, K.S. and Lister, C., in Flavonoids: Chemistry, Biochemistry, and Applications, Andersen, O.M. and Markham, K.R., Eds., Boca Raton: Taylor and Francis Group, 2006, pp. 397–442.Google Scholar
  35. 35.
    Szabados, L. and Savoure, A., Trends Plant Sci., 2009, vol. 15, no. 2, pp. 89–97.CrossRefPubMedGoogle Scholar
  36. 36.
    Yang, S.L., Shan-Shan, L., and Gong, M., J. Plant Physiol., 2009, vol. 166, no. 15, pp. 1694–1699.CrossRefPubMedGoogle Scholar
  37. 37.
    Suhita, D., Raghavendra, A.S., Kwak, J.M., and Vavasseur, A., Plant Physiol., 2004, vol. 134, no. 4, pp. 1536–1545.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., Sriranganayakulu, G., Reddy, P.C., and Sudhakar, C., Biol. Plant., 2006, vol. 50, no. 2, pp. 219–226.CrossRefGoogle Scholar
  39. 39.
    Neill, S.O. and Gould, K.S., Functional Plant Biol., 2003, vol. 30, no. 8, pp. 865–873.CrossRefGoogle Scholar
  40. 40.
    Dmitriev, A.P., Kovbasenko, R.V., Avdeeva, L.V., Lapa, S.V., and Kovbasenko, V.M., Signal’nye sistemy rastenii i formirovanie ustoichivosti protiv bioticheskogo stressa (Signaling Systems of Plants and Formation of Resistance to Biotic Stress), Kiev: Feniks, 2015.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  • T. O. Yastreb
    • 1
  • Yu. E. Kolupaev
    • 1
  • A. A. Lugovaya
    • 1
  • A. P. Dmitriev
    • 2
  1. 1.Dokuchaev National Agrarian UniversityKhar’kovUkraine
  2. 2.Institute of Cell Biology and Genetic EngineeringNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations