Advertisement

Plant Based Bioreactors of Recombinant Cytokines (Review)

Abstract

Cytokines are a family of signaling polypeptides involved in intercellular interactions in the process of the immune response, as well as in the regulation of a number of normal physiological functions. Cytokines are used in medicine for the treatment of cancer, immune disorders, viral infections, and other socially significant diseases, but the extent of their use is limited by the high production cost of the active agent. The development of this area of pharmacology is associated with the success of genetic engineering, which allows the production of significant amounts of protein by transgenic organisms. The review discusses the latest advances in the production of various cytokines with the use of genetically modified plants.

References

  1. 1.

    Itakura, K., Hirose, T., Crea, R., Riggs, A., Heyneker, H., Bolivar, F., and Boyer, H., Science, 1977, vol. 198, no. 4308, pp. 1056–1063.

  2. 2.

    Assenberg, R., Wan, P., Geisse, S., and Mayr, L., Curr. Opin. Struct. Biol., 2013, vol. 23, no. 3, pp. 393–402.

  3. 3.

    Lambertz, C., Garvey, M., Klinger, J., Heesel, D., Klose, H., Fischer, R., and Commandeur, U., Biotechnol. Biofuels, 2014, vol. 7, no. 1, p. 135.

  4. 4.

    Padkina, M.V., Parfenova, L.V., Gradoboeva, A.E., and Sambuk, E.V., Appl. Biochem. Microbiol., 2010, vol. 46, no. 4, pp. 409–414.

  5. 5.

    Fahad, S., Khan, F., Pandupuspitasari, N., Ahmed, M., Liao, Y., Waheed, M., Sameeullah, M., Darkhshan, Hussain S., Saud, S., Hassan, S., Jan, A., Jan, M., Wu, C., Chun, M., and Huang, J., Biotechnol. Lett., 2015, vol. 37, no. 2, pp. 265–279.

  6. 6.

    Bosze, Z., Baranyi, M., and Whitelaw, C., Adv. Exp. Med. Biol., 2008, vol. 606, pp. 357–393.

  7. 7.

    Li, J., Gu, L., Aach, J., and Church, G., PLoS ONE, 2014, vol. 9, no. 9, p. e106232. doi: 10.1371/journal. pone.0106232

  8. 8.

    Brooks, S.A., Mol. Biotechnol., 2004, vol. 28, no. 3, pp. 241–255.

  9. 9.

    Rosano, G. and Ceccarelli, E., Front. Microbiol., 2014, vol. 5, p. 172. doi: 10.3389/fmicb.2014.00172.

  10. 10.

    Bevan, M., Flavell, R., and Chilton, M.D., Biotechnology, 1983, vol. 24, pp. 367–370.

  11. 11.

    Ronald, P., Genetics, 2011, vol. 188, no. 1, pp. 11–20.

  12. 12.

    Rukavtseva, E.B., Bur’yanov, Ya.I., Shul’ga, N.Ya., and Bykov, V.A., Vopr. Biol. Med. Farm.Khim., 2006, no. 2, pp. 3–3.

  13. 13.

    Deineko, E.V., Vestn. Tomsk. Gos. Univ., Ser. Biol., 2012, no. 2, pp. 41–41.

  14. 14.

    Barta, A., Sommergruber, K., Thompson, D., Hartmuth, K., Matzke, M., and Matzke, A.J.M., Plant. Mol. Biol., 1986, vol. 6, no. 5, pp. 347–357.

  15. 15.

    Hiatt, A., Cafferkey, R., and Bowdish, K., Nature, 1989, vol. 342, no. 6245, pp. 76–78.

  16. 16.

    Hood, E., Witcher, D., Maddock, S., Meyer, T., Baszczynski, C., Bailey, M., Flynn, P., Register, J., Marshall, L., Bon, D., Kulisek, E., Kusnadi, A., Evangelista, R., Nikolov, Z., Wooge, C., Mehig, R., Hernan, R., Kappel, W., Ritland, D., Li, C., and Howard, J., Mol. Breed., 1997, vol. 3, no. 4, pp. 291–306.

  17. 17.

    Obembe, O., Popoola, J., Leelavathi, S., and Reddy, S., Biotechnol. Adv., 2011, vol. 29, no. 2, pp. 210–222.

  18. 18.

    Gomord, V., Fitchette, A., Menu-Bouaouiche, L., Saint-Jore-Dupas, C., Plasson, C., Michaud, D., and Faye, L., Plant Biotechnol. J., 2010, vol. 8, no. 5, pp. 564–587.

  19. 19.

    Xu, J., Ge, X., and Dolan, M., Biotechnol. Adv., 2011, vol. 29, no. 3, pp. 278–299.

  20. 20.

    Lienard, D., Sourrouille, C., Gomord, V., and Faye, L., Biotechnol. Annu. Rev., 2007, vol. 13, pp. 115–147.

  21. 21.

    Kim, H.J., Lee, D.H., Kim, D.K., Han, G.-B., and Kim, H.-J., Biol. Pharm. Bull., 2008, vol. 31, no. 2, pp. 290–294.

  22. 22.

    Desai, P., Shrivastava, N., and Padh, H., Biotechnol. Adv., 2010, vol. 28, no. 4, pp. 427–435.

  23. 23.

    Daniell, H., Ruiz, G., Denes, B., Sandberg, L., and Langridge, W., BMC. Biotechnol., 2009, vol. 9, p. 33. doi: 10.1186/1472-6750-9-33.

  24. 24.

    Lutova, L.A., Biotekhnologiya vysshikh rastenii (Biotechnology of Higher Plants), St. Petersburg: Izd. St.-Peterburg. Univ., 2003.

  25. 25.

    Broothaerts, W., Mitchell, H.J., Weir, B., Kaines, S., Smith, L.M.A., Yang, W., Mayer, J.E., Roa-Rodrıguez, C., and Jefferson, R.A., Nature, 2005, vol. 433, no. 7026, pp. 629–633.

  26. 26.

    Gao, C. and Nielsen, K.K., Methods Mol. Biol., 2013, vol. 940, pp. 3–16.

  27. 27.

    Sujatha, M. and Visarada, K.B., Methods Mol. Biol., 2013, vol. 940, pp. 27–44.

  28. 28.

    Oey, M., Lohse, M., Kreikemeyer, B., and Bock, R., Plant J., 2009, vol. 57, no. 3, pp. 436–445.

  29. 29.

    Larosa, V. and Remacle, C., Int. J. Dev. Biol., 2013, vol. 57, nos. 6–8, pp. 659–665.

  30. 30.

    Kittur, F.S., Bah, M., Archer-Hartmann, S., Hung, C.-Y., Azadi, P., Ishihara, M., Sane, D.C., and Xie, J., PLoS ONE, 2013, vol. 8, no. 10, p. e76468. doi: 10.1371/journal.pone.0076468.

  31. 31.

    Kanagarajan, S., Tolf, C., Lundgren, A., Waldenstrom, J., and Brodelius, P.E., PLoS ONE, 2012, vol. 7, no. 3, p. e33010. doi: 10.1371/journal. pone.0033010.

  32. 32.

    Hefferon, K.L., Open Access Scientific Reports, 2012, vol. 1, no. 2, p. 174. doi:10.4172/scientificreports.174.

  33. 33.

    Gleba, Y.Y., Tuse, D., and Giritch, A., Curr. Top. Microbiol. Immunol., 2014, vol. 375, pp. 155–192.

  34. 34.

    Gleba, Y., Klimyuk, V., and Marillonnet, S., Vaccine, 2005, vol. 23, nos. 17–18, pp. 2042–2048.

  35. 35.

    Tremblay, R., Wang, D., Jevnikar, A.M., and Ma, S., Biotechnol. Adv., 2010, vol. 28, no. 2, pp. 214–221.

  36. 36.

    Stiles, A. and Liu, C., Adv. Biochem. Engineer. Biotechnol., 2013, vol. 134, pp. 91–114.

  37. 37.

    Huang, T.-K. and McDonald, K.A., Biotechnol. Adv., 2012, vol. 30, no. 2, pp. 398–409.

  38. 38.

    Paul, M.J., Teh, A.Y.H., Twyman, R.M., and Ma, J.K.-C., Curr. Pharmaceut. Des., 2013, vol. 19, no. 31, pp. 5478–5485.

  39. 39.

    Cunha, N.B., Vianna, G.R., Almeida, Lima T., and Rech, E., Biotechnol. J., 2014, vol. 9, no. 1, pp. 39–50.

  40. 40.

    Rybicki, E.P., Virology J., 2014, vol. 11, Art. 205. doi: 10.1186/s12985-014-0205-0.

  41. 41.

    Burnouf, T., Vox Sang, 2011, vol. 100, no. 1, pp. 68–83.

  42. 42.

    Simbirtsev, A.S., Med. Akad. Zh., 2013, vol. 13, no. 1, pp. 7–22.

  43. 43.

    Khaitov, R.M., Ignat’eva, G.A., and Sidorovich, I.G., Immunologiya (Immunology), Moscow: Meditsina, 2000.

  44. 44.

    Sirko, A., Vanek, T., Gora-Sochacka, A., and Redkiewicz, P., Int. J. Mol. Sci., 2011, vol. 12, no. 6, pp. 3536–3552.

  45. 45.

    Xie, Y.F., Chen, H., and Huang, B.R., J. Biotechnol., 2007, vol. 129, no. 3, pp. 472–480.

  46. 46.

    Avdeeva, Zh.I., Alpatova, N.A., Akol’zina, S.E., and Medunitsyn, N.V., Tikhookean. Med. Zh., 2009, no. 3, pp. 19–19.

  47. 47.

    Simbirtsev, A.S., Petrov, A.V., Pigareva, N.V., and Nikolaev, A.T., Biopreparaty, 2011, no. 1, pp. 16–16.

  48. 48.

    Sayers, S., Ulysse, G., Xiang, Z., and He, Y., J. Biomed. Biotechnol., 2012, vol. 2012, p. 831486. doi: 10.1155/2012/831486.

  49. 49.

    Baldo, B.A., Drug Safety, 2014, vol. 37, no. 11, pp. 921–943.

  50. 50.

    Gradoboeva, A.E. and Padkina, M.V., Vestnik SPbGU, Ser. 3, 2008, no. 2, pp. 56–56.

  51. 51.

    Tsygankov, M.A., Zobnina, A.E., and Padkina, M.V., Appl. Biochem. Microbiol., 2014, vol. 50, no. 4, pp. 387–393.

  52. 52.

    Karabel’skii, A.V., Zinov’eva, Yu.G., Smirnov, M.N., and Padkina, M.V., Vestnik SPbGU, Ser. 3, 2009, no. 2, pp. 53–53.

  53. 53.

    Karabel’skii, A.V. and Padkina, M.V., Appl. Biochem. Microbiol., 2012, vol. 48, no. 4, pp. 416–420.

  54. 54.

    Flynn, J.L., Chan, J., Triebold, K.J., Dalton, D.K., Stewart, T.A., and Bloom, B.R., J. Exp. Med., 1993, vol. 178, no. 6, pp. 2249–2253.

  55. 55.

    Vesosky, B., Flaherty, D.K., and Turner, J., Infect. Immun., 2006, vol. 74, no. 6, pp. 3314–3324.

  56. 56.

    Ershov, F.I., Sistema interferona v norme i pri patologii (Interferon System in Health and Disease), Moscow: Meditsina, 1996.

  57. 57.

    Matsumoto, S., Ikura, K., Ueda, M., and Sasaki, R., Plant. Mol. Biol., 1995, vol. 27, no. 6, pp. 1163–1172.

  58. 58.

    Weise, A., Altmann, F., Rodriguez-Franco, M., Sjoberg, E.R., Baumer, W., Launhardt, H., Kietzmann, M., and Gorr, G., Plant Biotechnol. J., 2007, vol. 5, no. 3, pp. 389–401.

  59. 59.

    Cheon, B.Y., Kim, H.J., Oh, K.H., Bahn, S.C., Ahn, J.H., Choi, J.W., Ok, S.H., Bae, J.M., and Shin, J.S., Transgenic Res., 2004, vol. 13, no. 6, pp. 541–549.

  60. 60.

    James, E.A., Wang, C., Wang, Z., Reeves, R., Shin, J.H., Magnuson, N.S., and Lee, J.M., Protein Expr. Purif., 2000, vol. 19, no. 1, pp. 131–138.

  61. 61.

    Lee, J.-H., Kim, N.-S., Kwon, T.-H., Jang, Y.-S., and Yang, M.-S., J. Biotechnol., 2002, vol. 96, no. 3, pp. 205–211.

  62. 62.

    Shin, Y.-J., Hong, S.-Y., Kwon, T.-H., Jang, Y.-S., and Yang, M.-S., Biotechnol. Bioeng., 2003, vol. 82, no. 7, pp. 778–783.

  63. 63.

    Kim, N.-S., Kim, T.-G., Jang, Y.-S., Shin, Y.J., Kwon, T.-H., and Yang, M.-S., Plant. Mol. Biol., 2008, vol. 68, nos 4-5, pp. 369–377.

  64. 64.

    Kim, T.-G., Lee, H.-J., Jang, Y.-S., Shin, Y.-J., Kwon, T.-H., and Yang, M.-S., Protein Expr. Purif., 2008, vol. 61, no. 2, pp. 117–121.

  65. 65.

    Liu, Y.-K., Huang, L.-F., Ho, S.-L., Liao, C.-Y., Liu, H.-Y., Lai, Y.-H., Yu, S.-M., and Lu, C.-A., Biotechnol. Bioeng., 2012, vol. 109, no. 5, pp. 1239–1247.

  66. 66.

    Gora-Sochacka, A., Redkiewicz, P., Napiorkowska, B., Gaganidze, D., Brodzik, R., and Sirko, A., J. Interferon Cytokine Res., 2010, vol. 30, no. 3, pp. 135–142.

  67. 67.

    Wang, M.-L., Goldstein, C., Su, W., Moore, P.H., and Albert, H.H., Transgenic Res., 2005, vol. 14, no. 2, pp. 167–178.

  68. 68.

    Sardana, R., Dudani, A.K., Tackaberry, E., Alli, Z., Porter, S., Rowlandson, K., Ganz, P., and Altosaar, I., Transgenic Res., 2007, vol. 16, no. 6, pp. 713–721.

  69. 69.

    Sardana, R.K., Alli, Z., Dudani, A., Tackaberry, E., Panahi, M., Narayanan, M., Ganz, P., and Altosaar, I., Transgenic Res., 2002, vol. 11, no. 5, pp. 521–531.

  70. 70.

    Zhou, F., Wang, M.-L., Albert, H.H., Moore, P.H., and Zhu, Y.J., Appl. Microbiol. Biotechnol., 2006, vol. 72, no. 4, pp. 756–762.

  71. 71.

    Ning, T., Xie, T., Qiu, Q., Yang, W., Zhou, S., Zhou, L., Zheng, C., Zhu, Y., and Yang, D., Biotechnol. Lett., 2008, vol. 30, no. 9, pp. 1679–1686.

  72. 72.

    Won, J.H., Ji, J.E., Ahn, K.H., Kim, S.K., Choi, J.M., Ha, H.C., Kim, H.M., Yun, C.K., Han, K., and Kim, D.K., Biol. Pharmaceut. Bull., 2013, vol. 36, no. 3, pp. 425–431.

  73. 73.

    Nikitina, T.N. and Avdeeva, Zh.I., Biopreparaty, 2008, no. 1, pp. 16–16.

  74. 74.

    Magnuson, N.S., Linzmaier, P.M., Reeves, R., An, G., HayGlass, K., and Lee, J.M., Protein Expr. Purif., 1998, vol. 13, no. 1, pp. 45–52.

  75. 75.

    Park, Y. and Cheong, H., Protein Expr. Purif., 2002, vol. 25, no. 1, pp. 160–165.

  76. 76.

    Redkiewicz, P., Wiesyk, A., Gora-Sochacka, A., and Sirko, A., Plant Biotechnol. J., 2012, vol. 10, no. 7, pp. 806–814.

  77. 77.

    Matakas, J.D. and Balan, V., Carson IV, W.F., Gao, D., Brandizzi, F., Kunkel, S., and Sticklen, M., Int. J. Life Sci. Biotechnol. Pharma Res., 2013, vol. 2, no. 2, pp. 192–203.

  78. 78.

    Ma, S., Huang, Y., Davis, A., Yin, Z., Mi, Q., Menassa, R., Brandle, J.E., and Jevnikar, A.M., Plant Biotechnol. J., 2005, vol. 3, no. 3, pp. 309–318.

  79. 79.

    Menassa, R., Kennette, W., Nguyen, V., Rymerson, R., Jevnikar, A., and Brandle, J., J. Biotechnol., 2004, vol. 108, no. 2, pp. 179–183.

  80. 80.

    Bortesi, L., Rademacher, T., Schiermeyer, A., Schuster, F., Pezzotti, M., and Schillberg, S., BMC Biotechnol., 2012, vol. 12, Art. 40. doi: 10.1186/1472-6750-12-40.

  81. 81.

    Kaldis, A., Ahmad, A., Reid, A., McGarvey, B., Brandle, J., Ma, S., Jevnikar, A., Kohalmi, S.E., and Menassa, R., Plant Biotechnol. J., 2013, vol. 11, no. 5, pp. 535–545.

  82. 82.

    Chen, L., Dempsey, B.R., Gyenis, L., Menassa, R., Brandle, J.E., and Dhaubhadel, S., Plant Biotechnol. J., 2013, vol. 11, no. 5, pp. 546–554.

  83. 83.

    Kudo, F., Ohta, M., Yang, L., Wakasa, Y., Takahashi, S., and Takaiwa, F., Plant. Mol. Biol., 2013, vol. 81, nos. 4–5, pp. 461–475.

  84. 84.

    Zhang, X.-H., Keating, P., Wang, X.-W., Huang, Y.-H., Martin, J., Hartmann, J.X., and Liu, A., Mol. Biotechnol., 2014, vol. 56, no. 4, pp. 369–376.

  85. 85.

    De Marchis, F., Pompa, A., and Bellucci, M., Plant Physiol., 2012, vol. 160, no. 2, pp. 571–581.

  86. 86.

    Farran, I., Rio-Manterola, F., Iniguez, M., Garate, S., Prieto, J., and Mingo-Castel, A.M., Plant Biotechnol. J., 2008, vol. 6, no. 5, pp. 516–527.

  87. 87.

    Gutierrez-Ortega, A., Avila-Moreno, F., Saucedo-Arias, L.J., Sanchez-Torres, C., and Gomez-Lim, M.A., Biotechnol. Bioeng., 2004, vol. 85, no. 7, pp. 734–740.

  88. 88.

    Gutierrez-Ortega, A., Sandoval-Montes, C., de Olivera-Flores, T.J., Santos-Argumedo, L., and Gomez-Lim, M.A., Transgenic Res., 2005, vol. 14, no. 6, pp. 877–885.

  89. 89.

    Kwon, T.H., Seo, J.E., Kim, J., Lee, J.H., Jang, Y.S., and Yang, M.S., Biotechnol. Bioeng., 2003, vol. 81, no. 7, pp. 870–875.

  90. 90.

    Wang, D.J., Brandsma, M., Yin, Z., Wang, A., Jevnikar, A.M., and Ma, S., Plant Biotechnol. J., 2008, vol. 6, no. 5, pp. 504–515.

  91. 91.

    Zhang, B., Yang, Y., Lin, Y., Rao, Q., Zheng, G., and Wu, K., Biotechnol. Lett., 2003, vol. 25, no. 19, pp. 1629–1635.

  92. 92.

    Medrano, J., Reidy, M., Liu, J., Ayala, M., Dolan, M., and Cramer, C., Methods Mol. Biol., 2009, vol. 483, pp. 41–67.

  93. 93.

    Fujiwara, Y., Aiki, Y., Yang, L., Takaiwa, F., Kosaka, A., Tsuji, N.M., Shiraki, K., and Sekikawa, K., Protein Expr. Purif., 2010, vol. 72, no. 1, pp. 125–130.

  94. 94.

    Bortesi, L., Rossato, M., Schuster, F., Raven, N., Stadlmann, J., Avesani, L., Falorni, A., Bazzoni, F., Bock, R., Schillberg, S., and Pezzotti, M., BMC Biotechnol., 2009, vol. 9, Art. 22. doi:10.1186/1472-6750-9-22.

  95. 95.

    Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A., J. Leukocyte Biol., 2004, vol. 75, no. 2, pp. 163–189.

  96. 96.

    Fensterl, V. and Sen, G.C., BioFactors, 2009, vol. 35, no. 1, pp. 14–20.

  97. 97.

    Edelbaum, O., Stein, D., Holland, N., Gafni, Y., Livneh, O., Novick, D., Rubinstein, M., and Sela, I., J. Interferon Res., 1992, vol. 12, no. 6, pp. 449–453.

  98. 98.

    Arlen, P.A., Falconer, R., Cherukumilli, S., Cole, A., Cole, A.M., Oishi, K.K., and Daniell, H., Plant Biotechnol. J., 2007, vol. 5, no. 4, pp. 511–525.

  99. 99.

    Saveleva, N.V., Kurdyukov, I.D., Dudnik, E.E., Yemelyanov, V.V., Padkina, M.V., and Lutova, L.A., Vestnik SPbGU, Ser. 3, 2009, no. 4, pp. 65–65.

  100. 100.

    Luchakivskaya, Yu., Kishchenko, O., Gerasymenko, I., Olevinskaya, Z., Simonenko, Yu., Spivak, M., and Kuchuk, M., Plant Cell Rep., vol. 30, no. 3, pp. 407–415.

  101. 101.

    Fukuzawa, N., Tabayashi, N., Okinaka, Y., Furusawa, R., Furuta, K., Kagaya, U., and Matsumura, T., J. Biosci. Bioeng., 2010, vol. 110, no. 2, pp. 201–207.

  102. 102.

    Chen, T.-L., Lin, Y.-L., Lee, Y.-L., Yang, N.-S., and Chan, M.-T., Transgenic Res., 2004, vol. 13, no. 5, pp. 499–510.

  103. 103.

    RF Patent no. 2468082, 2012.

  104. 104.

    De Leede, L.G., Humphries, J.E., Bechet, A.C., Van Hoogdalem, E.J., Verrijk, R., and Spencer, D.G., J. Interferon Cytokine Res., 2008, vol. 28, no. 2, pp. 113–122.

  105. 105.

    Ohya, K., Itchoda, N., Ohashi, K., Onuma, M., Sugimoto, C., and Matsumura, T., J. Interferon Cytokine Res., 2002, vol. 22, no. 3, pp. 371–378.

  106. 106.

    Potula, H.H.S.K., Kathuria, S.R., Ghosh, A.K., Maiti, T.K., and Dey, S., Transgenic Res., 2008, vol. 17, no. 1, pp. 19–32.

  107. 107.

    Lee, G.-H., Sohn, S.-H., Park, E.-Y., and Park, Y.-D., Funct. Plant Biol., 2012, vol. 39, no. 9, pp. 764–773.

  108. 108.

    Okuzaki, A., Konagaya, K.-I., Nanasato, Y., Tsuda, M., and Tabei, Y., Plant Cell Rep., 2011, vol. 30, no. 4, pp. 529–538.

  109. 109.

    Garoosi, G.A., Salter, M.G., Caddick, M.X., and Tomsett, A.B., J. Exp. Bot., 2005, vol. 56, no. 416, pp. 1635–1642.

  110. 110.

    Lee, K.-T., Chen, S.-C., Chiang, B.-L., and Yamakawa, T., Appl. Microbiol. Biotechnol., 2007, vol. 73, no. 5, pp. 1047–1053.

  111. 111.

    Kuo, Y.-C., Tan, C.-C., Ku, J.-T., Hsu, W.-C., Su, S.-C., Lu, C.-A., and Huang, L.-F., Int. J. Mol. Sci., 2013, vol. 14, no. 5, pp. 8719–8739.

  112. 112.

    Xie, T., Qiu, Q., Zhang, W., Ning, T., Yang, W., Zheng, C., Wang, C., Zhu, Y., and Yang, D., Peptides, 2008, vol. 29, no. 11, pp. 1862–1870.

  113. 113.

    Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D., Plant J., 2003, vol. 33, no. 5, pp. 949–956.

  114. 114.

    Boivin, E.B., Lepage, E., Matton, D.P., De Crescenzo, G., and Jolicoeur, M., Biotechnol. Prog., 2010, vol. 26, no. 6, pp. 1534–1543.

  115. 115.

    Paulus, K.E., Mahler, V., Pabst, M., Kogel, K.-H., Altmann, F., and Sonnewald, U., Front. Plant Sci., 2011, vol. 2, Art. 42. doi: 10.3389/fpls.2011.00042.

  116. 116.

    Castilho, A., Neumann, L., Gattinger, P., Strasser, R., Vorauer-Uhl, K., Sterovsky, T., Altmann, F., and Steinkellner, H., PLoS ONE, 2013, vol. 8, no. 1, p. e54836. doi:10.1371/journal.pone.0054836.

  117. 117.

    Castilho, A., Neumann, L., Daskalova, S., Mason, H.S., Steinkellner, H., Altmann, F., and Strasser, R., J. Biol. Chem., 2012, vol. 287, no. 43, pp. 36518–36526.

  118. 118.

    Koprivova, A., Stemmer, C., Altmann, F., Hoffmann, A., Kopriva, S., Gorr, G., Reski, R., and Decker, E.L., Plant Biotechnol. J., 2004, vol. 2, no. 6, pp. 517–523.

  119. 119.

    Shin, Y.J., Chong, Y.-J., Yang, M.-S., and Kwon, T.-H., Plant Biotechnol. J., 2011, vol. 9, no. 9, pp. 1109–1119.

  120. 120.

    Jez, J., Castilho, A., Grass, J., Vorauer-Uhl, K., Sterovsky, T., Altmann, F., and Steinkellner, H., Biotechnol. J., 2013, vol. 8, no. 3, pp. 371–382.

  121. 121.

    Castilho, A., Gattinger, P., Grass, J., Jez, J., Pabst, M., Altmann, F., Gorfer, M., Strasser, R., and Steinkellner, H., Glycobiology, 2011, vol. 21, no. 6, pp. 813–823.

  122. 122.

    Joung, J.K. and Sander, J.D., Nat. Rev. Mol. Cell Biol., 2013, vol. 14, no. 1, pp. 49–55.

  123. 123.

    Musiychuk, K., Sivalenka, R., Jaje, J., Bi, H., Flores, R., Shaw, B., Jones, R.M., Golovina, T., Schnipper, J., Khandker, L., Sun, R., Li, C., Kang, L., Voskinarian-Berse, V., Zhang, X., Streatfield, S., Hambor, J., Abbot, S., and Yusibov, V., Stem Cells Dev., 2013, vol. 22, no. 16, pp. 2326–2340.

  124. 124.

    Tabar, M.S., Habashi, A.A., and Memari, H.R., Iran. Biomed. J., 2013, vol. 17, no. 3, pp. 158–164.

  125. 125.

    Kwon, T.-H., Kim, Y.-S., Lee, J.-H., and Yang, M.-S., Biotechnol. Lett., 2003, vol. 25, no. 18, pp. 1571–1574.

  126. 126.

    Zhao, Y., Qian, Q., Wang, H., and Huang, D., J. Genet. Genomics, 2007, vol. 34, no. 9, pp. 824–835.

  127. 127.

    Patel, J., Zhu, H., Menassa, R., Gyenis, L., Richman, A., and Brandle, J., Transgenic Res., 2007, vol. 16, no. 2, pp. 239–249.

  128. 128.

    Morandini, F., Avesani, L., Bortesi, L., Van Droogenbroeck, B., De Wilde, K., Arcalis, E., Bazzoni, F., Santi, L., Brozzetti, A., Falorni, A., Stoger, E., Depicker, A., and Pezzotti, M., Plant Biotechnol. J., 2011, vol. 9, no. 8, pp. 911–921.

  129. 129.

    RF Patent no. 2302460, 2007.

  130. 130.

    Sawahel, W.A., Cell. Mol. Biol. Lett., 2002, vol. 7, no. 1, pp. 19–29.

  131. 131.

    Lowther, W., Lorick, K., Lawrence, S.D., and Yeow, W.-S., Transgenic Res., 2012, vol. 21, no. 6, pp. 1349–1357.

  132. 132.

    Ohya, K., Matsumura, T., Ohashi, K., Onuma, M., and Sugimoto, C., J. Interferon Cytokine Res., 2001, vol. 21, no. 8, pp. 595–602.

  133. 133.

    Song, L., Zhao, D.-G., Wu, Y.-J., and Li, Y., J. Zhejiang. Univ. Sci. B, 2008, vol. 9, no. 5, pp. 351–355.

  134. 134.

    Li, J., Chen, M., Liu, X.-W., Zhang, H.-C., Shen, F.F., and Wang, G.P., Sci. Hortic., 2007, vol. 112, no. 3, pp. 258–265.

  135. 135.

    Youngblood, B.A., Alfano, R., Pettit, S.C., Zhang, D., Dallmann, H.G., Huang, N., and Macdonald, C.C., J. Biotechnol., 2014, vol. 172, pp. 67–72.

Download references

Author information

Correspondence to M. S. Burlakovskiy.

Additional information

Original Russian Text © M.S. Burlakovskiy, V.V. Yemelyanov, L.A. Lutova, 2016, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2016, Vol. 52, No. 2, pp. 149–167.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burlakovskiy, M.S., Yemelyanov, V.V. & Lutova, L.A. Plant Based Bioreactors of Recombinant Cytokines (Review). Appl Biochem Microbiol 52, 121–137 (2016). https://doi.org/10.1134/S0003683816020034

Download citation

Keywords

  • plant-based production systems
  • genetic transformation methods
  • cytokines
  • erythropoietin
  • interleukins
  • interferons
  • growth factors