Advertisement

Applied Biochemistry and Microbiology

, Volume 52, Issue 1, pp 1–14 | Cite as

Neutralization of reactive oxygen species by chitosan and its derivatives in vitro/in vivo (Review)

  • A. V. Il’ina
  • V. P. Varlamov
Article

Abstract

The review considers recent data that indicate the ability of chitosan and its derivatives to bind reactive oxygen species. The analysis of the results of these studies will promote the selection of a promising natural antioxidant for applications in the cosmetics, food, pharmaceutical, and other industries.

Keywords

chitosan chitosan derivatives antioxidants reactive oxygen species antioxidant activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vladimirov, Yu.A., Vestnik RAMN, 1998, no. 7, pp. 43–51.Google Scholar
  2. 2.
    Xia, Z., Carbohydr. Polym., 2015, vol. 118, no. 1, pp. 41–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Chen, S., Chen, H., Wang, Z., Tian, J., and Wang, J., Eur. Food Res. Technol., 2013, vol. 237, no. 5, pp. 691–701.CrossRefGoogle Scholar
  4. 4.
    Wang, Z., Wang, C., Su, T., and Zhang, J., Carbohydr. Res., 2014, vol. 112, no. 1, pp. 114–118.CrossRefGoogle Scholar
  5. 5.
    Zhang, Z.-F., Lv, G.-Y., Jiang, X., Cheng, J.-H., and Fan, L.-F., Carbohydr. Res., 2015, vol. 117, no. 1, pp. 185–191.CrossRefGoogle Scholar
  6. 6.
    Mestechkina, N.M., Bezborodova, O.A., Il’ina, A.V., Levov, A.N., Kleimenov, C.Yu., Nemtsova, E.R, Yakubovskaya, R.I., Shcherbukhin, V.D, and Varlamov, V.P., Appl. Biochem. Microbiol., 2011, vol. 47, no. 6, pp. 640–647.CrossRefGoogle Scholar
  7. 7.
    Shagina, S.E., Kuznetsova, O.V., Malakhova, E.A., Shostak, L.M., Leont’ev, V.N., and Varlamov, V.P., Khranen. Pererab. Sel’khozsyr’ya, 2008, no. 3, pp. 38–40.Google Scholar
  8. 8.
    Bakulin, A.V., Kurchenko, V.P., Sushinskaya, N.V., Azarko, I.I., and Varlamov, V.P., Trudy Gos. Univ. Belarusi, 2009, vol. 4, no. 2, pp. 290–297.Google Scholar
  9. 9.
    Feng, T., Du, Y., Li, J., Wei, Y., and Yao, P., Eur. Food Res. Technol., 2007, vol. 225, no. 1, pp. 133–138.CrossRefGoogle Scholar
  10. 10.
    Kim, K.W. and Thomas, R.L., Food Chem., 2007, vol. 101, no. 1, pp. 308–313.CrossRefGoogle Scholar
  11. 11.
    Sun, T., Zhou, D., Xie, J., and Mao, F., Eur. Food Res. Technol., 2007, vol. 225, nos. 3–4, pp. 451–456.CrossRefGoogle Scholar
  12. 12.
    Park, P.-J. and Kim, S.-K., Eur. Food Res. Technol., 2004, vol. 219, no. 1, pp. 60–65.CrossRefGoogle Scholar
  13. 13.
    Yen, M.-T., Yang, J.-H., and Mau, J.-L., Carbohydr. Res., 2008, vol. 74, no. 4, pp. 840–844.CrossRefGoogle Scholar
  14. 14.
    Yang, Y., Shu, R., Shao, J., Xu, G., and Gu, X., Eur. Food Res. Technol., 2006, vol. 222, no. 1, pp. 36–40.CrossRefGoogle Scholar
  15. 15.
    Ngo, D.-N., Kim, M.-M., and Kim, S.-K., Carbohydr. Res., 2008, vol. 74, no. 2, pp. 228–234.CrossRefGoogle Scholar
  16. 16.
    Liu, H.-T., Li, W.-M., Xu, G., Li, X.-Y., Bai, X.-F., Wei, P., Yu, C., and Du, Y.-G., Pharmacol. Res., 2009, vol. 59, no. 3, pp. 167–175.CrossRefPubMedGoogle Scholar
  17. 17.
    Mendis, E., Kim, M.-M., Rajapakse, N., and Kim, S.-K., Life Sci., 2007, vol. 80, no. 23, pp. 2118–2127.CrossRefPubMedGoogle Scholar
  18. 18.
    Yuan, W.-P., Liu, B., Liu, C.-H., Wang, X.-J., Zhang, M.-S., Meng, X.-M., and Xia, X.-K., World J. Gastroenterol., 2009, vol. 15, no. 11, pp. 1339–1345.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li, K., Xinga, R., Liu, S., Li, R., Qina, Y., Menga, X., and Li, P., Carbohydr. Res., 2012, vol. 88, no. 3, pp. 896–903.CrossRefGoogle Scholar
  20. 20.
    Guo, Z., Xing, R., Liu, S., Yu, H., Wang, P., Li, C., and Li, P., Bioorg. Med. Chem. Lett., 2005, vol. 15, no. 20, pp. 4600–4603.CrossRefPubMedGoogle Scholar
  21. 21.
    Nishikimi, M., Roa, N.A., and Yagi, K., Biochem. Biophys. Res. Commun., 1972, vol. 46, no. 2, pp. 849–854.CrossRefPubMedGoogle Scholar
  22. 22.
    Li, K., Liua, S., Xinga, R., Qina, Y., and Li, P., Carbohydr. Res., 2013, vol. 92, no. 2, pp. 1730–1736.CrossRefGoogle Scholar
  23. 23.
    Chen, A-S., Taguchi, T., Sakai, K., Kikuchi, K., Wang,M.-W., and Miwa, I., Biol. Pharm. Bull., 2003, vol. 26, no. 9, pp. 1326–1330.CrossRefPubMedGoogle Scholar
  24. 24.
    Russell, J., Ness, J., Chopra, M., McMurray, J., and Smith, W.E., J. Pharmaceut. Biomed. Anal., 1994, vol. 12, no. 7, pp. 863–866.CrossRefGoogle Scholar
  25. 25.
    Yang, S., Guo, Z., Miao, F., Xue, Q., and Qin, S., Carbohydr. Res., 2010, vol. 82, no. 4, pp. 1043–1045.CrossRefGoogle Scholar
  26. 26.
    Charernsriwilaiwat, N., Opanasopit, P., Rojanarata, T., and Ngawhirunpat, T., Trop. J. Pharm. Res., 2012, vol. 11, no. 2, pp. 235–242.CrossRefGoogle Scholar
  27. 27.
    Chen, S.-K., Hsu, C.-H., Tsai, M.-L., Chen, R.-H., and Drummen, G.P.C., Int. J. Mol. Sci., 2013, vol. 14, no. 10, pp. 19399–19415.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang, R., Rajapaksea, N., and Kim, S.-K., Carbohydr. Res., 2006, vol. 63, no. 1, pp. 122–129.CrossRefGoogle Scholar
  29. 29.
    Xing, R., Liu, S., Guo, Z., Yu, H., Zhong, Z., Ji, X., and Li, P., Europen. J. Med. Chem., 2008, vol. 43, no. 2, pp. 336–340.CrossRefGoogle Scholar
  30. 30.
    Sun, T., Yao, Q., Zhou, D., and Mao, F., Bioorg. Med. Chem. Lett., 2008, vol. 18, no. 21, pp. 5774–5776.CrossRefPubMedGoogle Scholar
  31. 31.
    Vladimirov, Yu.A. and Proskurina, E.V., Usp. Biol. Khim., 2009, vol. 49, pp. 341–388.Google Scholar
  32. 32.
    Yen, G.C. and Chen, H.Y., J. Agric. Food Chem., 1995, vol. 43, no. 1, pp. 27–32.CrossRefGoogle Scholar
  33. 33.
    Liu, J., Sun, H., Dong, F., Xue, Q., Wang, G., Qin, S., and Guo, Z., Carbohydr. Res., 2009, vol. 78, no. 3, pp. 439–443.CrossRefGoogle Scholar
  34. 34.
    Sun, T., Zhu, Y., Xie, J., and Yin, X., Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 3, pp. 798–800.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhong, Z., Ji, X., Xing, R., Liu, S., Guo, Z., Chen, X., and Li, P., Bioorg. Med. Chem., 2007, vol. 15, no. 10, pp. 3775–3782.CrossRefPubMedGoogle Scholar
  36. 36.
    Ying, G.-Q., Xiong, W.-Y., Wang, H., Sun, Y., and Liu, H.-Z., Carbohydr. Res., 2011, vol. 83, no. 4, pp. 1787–1796.CrossRefGoogle Scholar
  37. 37.
    Rao, M.S., Chawla, S.P., Chander, R., and Sharma, A., Carbohydr. Polym., 2011, vol. 83, no. 2, pp. 714–719.CrossRefGoogle Scholar
  38. 38.
    Phisut, N. and Jiraporn, B., IFRJ, 2013, vol. 20, no. 3, pp. 1077–1085.Google Scholar
  39. 39.
    Kurek-Gorecka, A., Rzepecka-Stojko, A., Gorecki, M., Stojko, J., Sosada, M., and Swierczek-Zieba, G., Molecules, 2014, vol. 19, no. 1, pp. 78–101.CrossRefGoogle Scholar
  40. 40.
    Krishnaiah, D., Sarbatly, R., and Nithyanandam, R., Food Bioprod. Process, 2011, vol. 89, no. 3, pp. 217–233.CrossRefGoogle Scholar
  41. 41.
    Eom, T.-K., Senevirathne, M., and Kim, S.-K., Environ. Toxicol. Pharmacol., 2012, vol. 34, no. 2, pp. 519–527.CrossRefPubMedGoogle Scholar
  42. 42.
    Woranuch, S. and Yoksan, R., Carbohydr. Res., 2013, vol. 96, no. 2, pp. 495–502.CrossRefGoogle Scholar
  43. 43.
    Aytekin, A.O., Morimura, S., and Kida, K., J. Biosci. Bioeng., 2011, vol. 111, no. 2, pp. 212–216.CrossRefPubMedGoogle Scholar
  44. 44.
    Nunes, C., Maricato, E., Cunha, A., Nunes, A., Lopes da Silva, J.A., and Coimbra, M.A., Carbohydr. Res., 2013, vol. 91, no. 1, pp. 236–243.CrossRefGoogle Scholar
  45. 45.
    Re, R., Pellegrini, N., Proteggente, A., Pannala, A., and Yang, M., Free Radical Biol. Med., 1999, vol. 26, nos. 9–10, pp. 1231–1237.CrossRefGoogle Scholar
  46. 46.
    Nile, S.H., Khobragade, C.N., and Park, S.W., Mini Rev. Med. Chem., 2012, vol. 12, no. 10, pp. 007–1014.CrossRefGoogle Scholar
  47. 47.
    Pasanphan, W., Buettner, G.R., and Chirachanchai, S., Carbohydr. Res., 2010, vol. 345, no. 1, pp. 132–140.CrossRefPubMedGoogle Scholar
  48. 48.
    Koryagin, A.S., Erofeeva, E.A., Yakimovich, N.O., Aleksandrova, E.A., Smirnova, L.A., and Mal’kov, A.V., Byull. Eksp. Biol. Med., 2006, vol. 142, no. 10, pp. 444–446.Google Scholar
  49. 49.
    Eshkova, O.Yu., Talamanova, M.N., Veselova, T.A., Mochalova, A.E., and Koryagin, A.S., Vestnik Nizhegorod. Univ. im. N.I. Lobachevskogo, 2010, no. 2, pp. 513–515.Google Scholar
  50. 50.
    Cheng, Y., Cai, H., Yin, B., Yao, P., Inter. J. Pharm., 2013, vol. 454, no. 1, pp. 425–434.CrossRefGoogle Scholar
  51. 51.
    Hong, Y.K. and Li, T., J. Food Agric. Environ., 2013, vol. 11, nos. 3–4, pp. 526–529.Google Scholar
  52. 52.
    Mohamed, N.E., J. Am. Sci., 2011, vol. 7, no. 6, pp. 406–417.Google Scholar
  53. 53.
    Kuppusamy, S. and Karuppaiah, J., Asian Pac. J. Trop. Dis., 2012, vol. 2, suppl. 2, pp. 769–773.CrossRefGoogle Scholar
  54. 54.
    Mikhailov, S.N. and Varlamov, V.P., Khitozan biopolimer s unikal’nymi svoistvami. “KhITOZAN” (Chitosan—Biopolymer with Unique Properties. "Chitosan”), Skryabin, K.G., Mikhailov, S.N., and Varlamov, V.P., Eds., Moscow: Tsentr “Bioinzheneriya” RAN, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2016

Authors and Affiliations

  1. 1.Institute of Bioengineering, Biotechnologies Federal Research CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations