Applied Biochemistry and Microbiology

, Volume 51, Issue 9, pp 887–892 | Cite as

Production of taunit–antibiotic nanocomplexes and study of their antifungal activity relative to Aspergillus niger and Candida albicans

  • A. V. Timofeeva
  • M. V. Ilyina
  • E. A. Stepashkina
  • L. A. Baratova
  • G. S. Katrukha
Technology of Biopreparations


Nanocomplexes based on a modern Taunit nanosorbent with polyene antibiotics (amphotericin B, nystatin A1, and natamycin) widely used in medical practice were obtained for the first time; their antifungal activity was studied. It was demonstrated that the Taunit–nystatin A1 complex is active as compared to Aspergillus niger, while the Taunit–natamycin complex is active as compared to Aspergillus niger and Candida albicans. The Taunit–amphotericin B nanocomplex is not active relative to the studied test organisms (A. niger and C. albicans). Possible mechanisms of the action of the obtained complexes are discussed.


antimycotics antifungal activity Taunit–antibiotic type complexes Taunit multilayer carbon nanotubes polyene antibiotics 



dimethyl sulfoxide


colony-forming unit


multilayer carbon nanotubes


meticillinresistant Staphylococcus aureus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richards, M.I., Edwards, J.R., Culver, D.H., and Gaynes, R.P., Nosocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system, Crit. Care Med., 1999, vol. 27, pp. 887–892.CrossRefPubMedGoogle Scholar
  2. 2.
    McNeil, M.M., Hash, S.L., Hajjeh, R.A., Phelan, M.A., Conn, L.A., Pliraytis, B.D., and Wamock, D.W., Trends in mortality due to invasive mycotic diseases in the united states, 1980-1997, Clin. Infect. Diseases, 2001, vol. 33, no. 5, pp. 641–647.CrossRefGoogle Scholar
  3. 3.
    Wisplinghoff, H., Bischoff, T., Tallent, S.M., Seifert, H., Wenzel, R.P., and Edmond, M.B., Nosocomial bloodstream infections in us hospitals: analysis of 24179 cases from a prospective nationwide surveillance study, Clin. Infect. Diseases, 2004, vol. 39, no. 3, pp. 309–317.CrossRefGoogle Scholar
  4. 4.
    Hospenthal, D.R., Mandell, G.L., Bennett, J.E., and Dolin, R., “Uncommon fungi”, in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases, 6th ed., Philadelphia, USA, Churchill: Livingstone, 2005, vol. 2, pp. 3068–3079.Google Scholar
  5. 5.
    van Thiel, D.H., George, M., and Moore, C.M., Fungal infections: their diagnosis and treatment in transplant recipients, Int. J. Hepatol., 2012, vol. 12, pp. 1–19.CrossRefGoogle Scholar
  6. 6.
    Ae Jung Huh and Young Jik Kwon, Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistantera, J. Controlled Release, 2011, vol. 156, pp. 128–145.CrossRefGoogle Scholar
  7. 7.
    Mishchenko, S.V. and Tkachev, A.G., Uglerodnye nanomaterialy. Proizvodstvo, svoistva, primenenie (Carbon Nanomaterials: Production, Properties, and Applications), Moscow: Mashinostroenie, 2008.Google Scholar
  8. 8.
    Timofeeva, A.V., Galatenko, O.A., Il’ina, M.V., Terekhova, L.P., and Katrukha, G.S., Obtaining and research of antimicrobial activity of “antibiotic-nanotube"-type complexes ("Taunit” antibiotic), in Proc. 9th Int. Sci. Pract. Conf. “Future Investigations, vol. 22: Medicine, Sofia: Byal GRAD-BG LTD, 2013. p. 112.Google Scholar
  9. 9.
    Milton, B., Sloane. a new antifungal antibiotic, mycostatin (nystatin) for the treatment of moniliasis: a preliminary report, J. Investigat. Dermatol., 1955, vol. 24, pp. 569–571.CrossRefGoogle Scholar
  10. 10.
    Stark, J. and Tan, H.S., Natamycin, New York: Plenum Publishers, 2003.Google Scholar
  11. 11.
    Brajtburg, J., Powderly, W.G., Kobayashi, G.S., and Medoff, G., Amphotericin B: current understanding of mechanisms of action, J. Antimicrob. Agents. Chemother., 1990, vol. 34, no. 2, pp. 183–188.CrossRefGoogle Scholar
  12. 12.
    Eremenko, A.S., and Vlasov, A.I., Study of carbon fibers and carbon nanotubes, in Dvenadtsataya nauchnaya konf. “Shag v budushchee” (12th Sci. Conf. “A Step into the Future”), Moscow, 2009.Google Scholar
  13. 13.
    Haese, A. and Keller, U., Genetics of actinomycin c production in Streptomyces chrysomallus, J. Bacteriol., 1988, vol. 170, no. 3, pp. 1360–1368.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Odds, F.S., Sordarin antifungal agents, Expert Opin. Ther., 2001, vol. 11, pp. 283–294.CrossRefGoogle Scholar
  15. 15.
    Baginski, M. Czub, J., Amphotericin B and its new derivatives-mode of action, Curr. Drug Metab., 2009, vol. 10, pp. 459–469.CrossRefPubMedGoogle Scholar
  16. 16.
    Van de Ven, H., Paulussen, C., Feijens, P.B., Mate heeussen, A., Rombaut, P., Kayaert, P., Van den Mooter, G., Cos, P., Maes, L., and Ludwig, A., PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and alternatives to fungisone and ambisome, J. Controlled Release, 2012, vol. 161, pp. 795–803.CrossRefGoogle Scholar
  17. 17.
    Prajapati, V.K., Awasthi, K., Gautam, S., Yadav, T.P., Rai, M., Srivastava, O.N., and Sundar, S., Targeted killing of Leishmania donovani in vivo with amphotericin B attached to functionalized carbon nanotubes, J. Antimicrob. Chemother., 2011, vol. 66, pp. 874–879.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Hamilton-Miller, J.M.T., Chemistry and biology of the polyene macrolide antibiotics, Bacteriol. Rev., 1973, vol. 37, no. 2, pp. 166–196.Google Scholar
  19. 19.
    Eletskii, A.V., Carbon nanotubes, Usp. Fiz. Nauk, 1997, vol. 167, no. 9, pp. 945–972.CrossRefGoogle Scholar
  20. 20.
    Heve, M., Duboury, J.C., Borowski, E., Cybulska, B., and Gary-Bobo, C.M., The role of the carboxyl and amino groups of polyene macrolides in their interaction with sterols and their selective toxicity. a 31p-nmr study, Biochim. Biophys. Acta, 1989, vol. 98, pp. 261–272.Google Scholar
  21. 21.
    Tanford, C., The Hydrophobic Effect: Formation Of Micelles And Biological Membranes, New York: John Wiley and Sons Inc., 1980.Google Scholar
  22. 22.
    Eletskii, A.V., Sorption properties of carbon nanostructures, Usp. Fiz. Nauk, 2004, vol. 174, no. 11, pp. 1191–1231.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • A. V. Timofeeva
    • 1
  • M. V. Ilyina
    • 2
  • E. A. Stepashkina
    • 3
  • L. A. Baratova
    • 1
  • G. S. Katrukha
    • 3
  1. 1.Belozersky Research Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  2. 2.Mendeleyev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Gause Institute of New AntibioticsRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations