Applied Biochemistry and Microbiology

, Volume 50, Issue 7, pp 730–736 | Cite as

Preparation and characterization of bioactive products obtained via the solubilization of brown coal by white rot fungi

  • O. I. Klein
  • N. A. Kulikova
  • E. V. Stepanova
  • O. I. Filippova
  • T. V. Fedorova
  • L. G. Maloshenok
  • I. S. Filimonov
  • O. V. Koroleva
Application of Biomaterials


We investigated the solubilizing activity of the Basidiomycete fungi Trametes hirsuta and Trametes maxima, with respect to brown coal (lignite) during liquid phase cultivation. We found that the degrading capacity of the fungi is determined by the activity of the ligninolytic enzymes Mn peroxidase and lignin peroxidase. We assessed the growth-stimulating activity of biopreparations (BPs), based on the culture liquids (CL) of the studied fungal strains, which were grown on a rich or minimal medium. We found that the obtained BPs inhibited the growth of wheat shoots and roots at the germination stage, but they either had no effect at later stages of plant growth or showed a mild stimulation. When basidiomycetes were cultivated in the presence of brown coal, the obtained BPs stimulated root growth at the germination stage, and did not influence plant growth (Trametes hirsuta) or stimulated it (Trametes maxima) at later stages. Further, we report a pronounced detoxifying ability of the BPs in respect to the atrazine herbicide. We suggest that this effect is caused by the laccases action, that are present in the studied BPs.

Key words

biosolubilization brown coal lingninolytic enzymes Trametes hirsuta Trametes maxima 





humic substances


culture liquid


international unit of enzyme activity


photosynthesis system II


electron transport chain


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khristeva, L.A., Solokha, K.I., and Gorovaya, A.I., About similarities and differences in the action of humic physiologically active substances on the plant, its nature, and some agronomic aspects of their use, in Mat. Vses. nauch. konf. “Teoreticheskie osnovy deistviya fiziologicheski aktivnykh veshchestv i effektivnost’ udobrenii ikh soderzhashchikh” (Proc. All-Union Sci. Conf. “Theoretical Foundations of the Action of Physiologically Active Substances and the Efficiency of Fertilizers Containing Them”), Dnepropetrovsk: Promin’, 1967, pp. 14–26.Google Scholar
  2. 2.
    Popov, A.I., Guminovye veshchestva. Svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, and Formation), St. Petersburg: Izd. S.-Peterburg. Univ., 2004.Google Scholar
  3. 3.
    Hofrichter, M. and Fritsche, W., Depolymerization of low-rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-aciddepolymerizing funges Nematoloma frowardii B19, Appl. Microbiol. Biotechnol., 1997, vol. 47, pp. 419–424.CrossRefGoogle Scholar
  4. 4.
    Solarska, S., May, T., Roddick, F.A., and Lawrie, A.C., Isolation and screening of natural organic matter-degrading fungi, Chemosphere, 2009, vol. 75, no. 6, pp. 751–758.PubMedCrossRefGoogle Scholar
  5. 5.
    Gramss, G., Ziegenhagen, D., and Sorge, S., Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes, Microb. Ecol., 1999, vol. 37, no. 2, pp. 140–151.PubMedCrossRefGoogle Scholar
  6. 6.
    Rezacova, V., Hrselova, H., Gryndlerova, H., Miksik, I., and Gryndler, M., Modifications of degradation-resistant soil organic matter by soil saprobic microfungi, Soil Biol. Biochem., 2006, vol. 38, no. 8, pp. 2293–2299.CrossRefGoogle Scholar
  7. 7.
    Cohen, M.S. and Gabriele, P.D., Degradation of coal by the fungi Polyporus versicolor and Poria monticola, Appl. Environ. Microbiol., 1982, vol. 44, pp. 23–27.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Fakoussa, R.M. and Willmann, G., Biochemical and enzymatic studies of the active compounds in solubilization/liquefaction of hard coal and lignite, in Proc. of lrst International Symposium on Biological Processing of Coal, Orlando, USA: University of Central Florida, 1990, pp. 3–13.Google Scholar
  9. 9.
    Catcheside, D.E.A. and Mallet, K.J., Solubilization of Australian lignites by fungi and other microorganisms, Energy Fuels, 1991, vol. 5, pp. 141–145.CrossRefGoogle Scholar
  10. 10.
    Monistrol, I.F. and Laborda, L.F., Liquefaction and/or solubilization of Spanish coal by newly isolated microorganisms, Fuel Proc. Technol., 1994, vol. 40, pp. 205–216.CrossRefGoogle Scholar
  11. 11.
    Holker, U., Fakoussa, R.M., and Hofer, M., Growth substrates control the ability of Fusarium oxysporum to solubilize coal, Appl. Microbiol. Biotechnol., 1995, vol. 44, pp. 351–355.CrossRefGoogle Scholar
  12. 12.
    Wadhwa, G. and Sharma, D.K., Sharma microbial pretreatment of coals: a tool for solubilization of lignite in organic solvent—quinoline, J. Microbiol. Biotechnol., 1998, vol. 14, pp. 751–763.CrossRefGoogle Scholar
  13. 13.
    Hatakka, A., in Biodegradation of Lignin: Biolymers. Lignin, Humic Substances and Coal, Hofrichter, M. and Steinbuchel, A., Eds., Weinheim, Germany: Wiley-VCH, 2001, vol. 1, no. 1, pp. 129–180.Google Scholar
  14. 14.
    Koroleva-Skorobogat’ko, O., Stepanova, E., Gavrilova, V., Morozova, O., Lubimova, N., Dzchafarova, A., Yaropolov, A., and Makower, A., Purification and characterization of the constitutive form of laccase from the basidiomycete Coriolus hersutus and effect of inducers on laccase synthesis, J. Biotechnol. Appl. Biochem., 1998, vol. 28, no. 1, pp. 47–54.Google Scholar
  15. 15.
    Sivochub, O.A., Katalog kul’tur bazidiomitsetov Kollektsii Botanicheskogo Instituta im. V.L. Komarova RAN (Catalogue of Basidiomycete Cultures of Komarov Botanical Institute, Russian Academy of Sciences), St. Petersburg: Nauka, 1992.Google Scholar
  16. 16.
    Marzullo, L., Cannio, R., Giardina, P., Santini, M.T., and Sannia, G., Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates, J. Biol. Chem., 1995, vol. 270, pp. 3823–3827.PubMedCrossRefGoogle Scholar
  17. 17.
    Paszczynski, A., Grawford, R.L., and Huynh, V.-B., Manganese Peroxidase from Phanerochaete chrisosporium: Purification, Methods Enzymol., Wood, W.A. and Kellogg, S.T., Eds., New York: AP, 1988, vol. 161, pp. 264–271.Google Scholar
  18. 18.
    Koroleva, O.V., Yavmetdinov, I.S., Shleev, V.G., Stepanova, E.V., and Gavrilova, V.P., Isolation and study of some properties of laccase from the basidiomycetes Cerrena maxima, Biochemistry (Moscow), 2001, vol. 66, pp. 618–622.PubMedGoogle Scholar
  19. 19.
    Snajdr, J., Steffen, K.T., Hofrichter, M., and Baldrian, P., Transformation of C-14-labelled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and hypholoma fasciculare, Soil Biol. Biochem., 2011, vol. 42, no. 9, pp. 1541–1548.CrossRefGoogle Scholar
  20. 20.
    Hofrichter, M., Ziegenhagen, D., Sorge, S., Ullrich, R., Bublitz, F., and Fritsche, W., Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system, Appl. Microbiol. Biotechnol., 1999, vol. 52, no. 1, pp. 78–84.PubMedCrossRefGoogle Scholar
  21. 21.
    Kabe, Y., Osawa, T., Ishihara, A., and Kabe, T., Decolorization of coal humic acid by extracellular enzymes produced by white-rot fungi, Coal Prep., 2005, vol. 25, no. 4, pp. 211–220.CrossRefGoogle Scholar
  22. 22.
    Gotz, G.K.E., Fakoussa, R.M., Fungal biosolubilization of Rhenish brown coal monitored by curie-point pyrolysis/gas chromatography/mass spectrometry using tetraethylammonium hydroxide, Appl. Microbiol. Biotechnol., 1999, vol. 52, no. 1, pp. 41–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Klein, O.I., Kulikova, N.A., Konstantinova, A.I., Fedorova, T.V., Landesman, E.O., and Koroleva, O.V., Transformation of humic substances of highly oxidized brown coal by basidiomycetes Trametes hirsuta and Trametes maxima, App. Biochem. Microbiol., 2013, no. 3, pp. 287–295.Google Scholar
  24. 24.
    Koroleva, O.V., Stepanova, E.V., Gavrilova, V.P., Yakovleva, N.S., Landesman, E.O., Yavmetdinov, I.S., and Yaropolov, A.I., Laccase and Mn-peroxidase production by Coriolus hirsutus strain 075 in a jar fermenter, J. Biosci. Bioeng., 2002, vol. 93, no. 5, pp. 449–455.PubMedCrossRefGoogle Scholar
  25. 25.
    Eichlerova,.I, Sbajdr, J., and Baldrian, P., Laccase activity in soils: Considerations for the measurement of enzyme activity Chemosphere, 2012, vol. 88, no. 10, pp. 1154–1160.PubMedCrossRefGoogle Scholar
  26. 26.
    Terekhova, V.A., Koroleva, O.V., Rakhleeva, A.A., Kulikova, N.A., Landesman, E.O., and Klein, O.I., Fungal preparations for degradation of lignin-containing waste: biosafety assessment, Teor. Prikl. Ekol., 2012, no. 3, pp. 19–23.Google Scholar
  27. 27.
    Canellas, L.P., Olivares, F.L., Okorokova-Facanha, A.L., and Facanha, A.R., Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H-ATPase activity in maize roots, Plant Physiol., 2002, vol. 130, no. 4, pp. 1951–1957.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Matorin, D.N., Osipov, V.A., and Rubin, A.B., Metodika izmerenii obiliya i indikatsii izmeneniya sostoyaniya fitoplanktona v prirodnykh vodakh fluorestsentnym metodom. Teoreticheskie i prakticheskie aspekty. Uchebnometodicheskoe posobie (Technique for Measuring the Abundance and Indication of Changes in the State of Phytoplankton in Natural Waters by the Fluorescence Method. Theoretical and Practical Aspects: A Manual), Moscow: OOO PKTs Al’teks, 2012.Google Scholar
  29. 29.
    Gorbatova, O.N., Koroleva, O.V., Landesman, E.O., Stepanova, E.V., and Zherdev, A.V., Increase of the detoxification potential of basidiomycetes by induction of laccase biosynthesis, Appl. Biochem. Microbiol., 2006, vol. 42, no. 4, pp. 414–419.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • O. I. Klein
    • 1
  • N. A. Kulikova
    • 1
    • 2
  • E. V. Stepanova
    • 1
  • O. I. Filippova
    • 2
  • T. V. Fedorova
    • 1
  • L. G. Maloshenok
    • 1
  • I. S. Filimonov
    • 3
  • O. V. Koroleva
    • 1
  1. 1.The Bach Institute of BiochemistryRussian Academy of Sciences (RAS)MoscowRussia
  2. 2.The Department of Soil ScienceLomonosov Moscow State UniversityMoscowRussia
  3. 3.The International Education Research Center of BiotechnologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations