Advertisement

Applied Biochemistry and Microbiology

, Volume 50, Issue 6, pp 601–608 | Cite as

Evaluation of the flocculation potential and characterization of bioflocculant produced by Micrococcus sp. Leo

  • K. OkaiyetoEmail author
  • U. U. Nwodo
  • L. V. Mabinya
  • A. I. Okoh
Article

Abstract

Bioflocculants are safe, biodegradable and environmentally friendly biopolymeric materials. These merits portend it as preferred alternative to inorganic and organic synthetic polymeric flocculants. The culture conditions optimal for the production of bioflocculant by Micrococcus sp. Leo with subsequent evaluation of the properties of the produced compound were investigated. Optimum culture conditions for bioflocculant production included 2% (vol/vol) inoculum size, incubation temperature of 28°C, agitation speed of 160 rpm and initial pH of 4.0. Glucose and (NH4)2SO4 and Al3+ were the best as sole carbon, nitrogen and cation sources, respectively. The purified bioflocculant flocculated kaolin suspension optimally at a dosage of 0.2 mg/mL following jar test, and flocculating activity of about 70% was retained after heat treatment of 100°C. Chemical analysis showed that the bioflocculant was composed of 28.4% polysaccharide, 2.6% protein and 9.7%. uronic acid. Thermogravimetric analysis demonstrated that the bioflocculant could not decompose completely at 400°C. FTIR spectra revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups. The bioflocculant produced by Micrococcus sp. Leo appears to hold promise as an alternative to conventional flocculants commonly used in water/wastewater treatment.

Keywords

Apply Biochemistry Nitrogen Source Agitation Speed Uronic Acid Inoculum Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salehizadeh, H. and Shojaosadati, S.A., Biotechnol. Adv., 2001, vol. 19, no. 5, pp. 371–385.PubMedCrossRefGoogle Scholar
  2. 2.
    Nwodo, U.U. and Okoh, A.I., J. Appl. Microbiol., 2012, vol. 114, no. 5, pp. 1325–1337CrossRefGoogle Scholar
  3. 3.
    Wu, J.Y. and Ye, H.F., Proc. Biochem., 2007, vol. 42, no. 7, pp. 1114–1123.CrossRefGoogle Scholar
  4. 4.
    Prasertsan, P., Dermlim, W., Doelle, H., and Kennedy, J.F., Carbohydrate Polymers, 2006, vol. 66, no. 3, pp. 289–297.CrossRefGoogle Scholar
  5. 5.
    Ruden, C., Food Chem. Toxicol., 2004, vol. 42, no. 3, pp. 335–349.PubMedCrossRefGoogle Scholar
  6. 6.
    Xia, S., Zhang, Z., Wang, X., Yang, A., Chen, L., Zhao, J., Leonard, D., and Jaffrezic-Renault, N., Bioresour. Technol., 2008, vol. 99, no. 14, pp. 6520–6527.PubMedCrossRefGoogle Scholar
  7. 7.
    Deng, S.B., Bai, R.B., Hu, X.M., and Luo, Q., Appl. Microbiol. Biotechnol., 2003, vol. 60, no. 5, pp. 588–593.PubMedCrossRefGoogle Scholar
  8. 8.
    He, J., Zou, J., Shao, Z., and Zhang, J., World J. Microbiol. Biotechnol., 2010, vol. 26, no. 6, pp. 1135–1141.CrossRefGoogle Scholar
  9. 9.
    Zhang, Z., Ling, B., Xia, S., Wang, X., and Yang, A., J. Environ. Sci., 2007, vol. 19, no. 6, pp. 667–673.CrossRefGoogle Scholar
  10. 10.
    Zheng, Y., Ye, Z., Fang, X., Li, Y., and Cia, W., Biosour. Technol., 2008, vol. 99, no. 16, pp. 7686–7691.CrossRefGoogle Scholar
  11. 11.
    Gong, W., Wang, S., Sun, X., Liu, X., Yue, Q., and Gao, B., Bioresour. Technol., 2008, vol. 99, no. 11, pp. 4668–4674.PubMedCrossRefGoogle Scholar
  12. 12.
    Yim, J.H., Kim, S.J., Ahn, S.H., and Lee, H.K., Bioresour. Technol., 2007, vol. 98, no. 2, pp. 361–367.PubMedCrossRefGoogle Scholar
  13. 13.
    The Prokaryotes, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E., Eds., 3rd ed., New York: Springer, 2006, pp. 961–971.Google Scholar
  14. 14.
    Bannerman, T.L. and Peacock, S.J., Manual of Clinical Microbiology, 9th ed., Washington, USA: ASM Press, 2007, pp. 390–404.Google Scholar
  15. 15.
    Kurane, R., Hatamochi, K., Kakuno, T., Kiyohara, M., Hirano, M., and Taniguchi, Y., Biosci. Biotech. Bioch., 1994, vol. 2, no. 6, pp. 428–429.CrossRefGoogle Scholar
  16. 16.
    Ugbenyen, A., Sekelwa, C., Leonard, M., Olubukola, O.B., Farhad, A., and Okoh, A.I., Int. J. Environ. Res. Publ. Health, 2012, vol. 9, no. 6, pp. 2108–2120.CrossRefGoogle Scholar
  17. 17.
    Cosa, S., Mabinya, L.V., Olaniran, A.O., Okoh, O.O., and Okoh A.I., Molecules, 2011, vol. 16, no. 3, pp. 2431–2442.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, Y., Gao, B.Y., Yue, Q.Y., Wei, J.C., Zhou, W.Z., and Gu, R., Environ. Technol., 2010. vol. 28, no. 6, pp. 629–637.CrossRefGoogle Scholar
  19. 19.
    Okaiyeto K., Nwodo U.U., Mabinya L.V., and Okoh A.I., Int. J. Environ. Res. Public Health, 2013, vol. 10, no. 10, pp. 5097–5110.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Xiong, Y., Wang, Y., Yu, Y., Li, Q., Wang, H., Chen, R., and He, N., Appl. Environ. Microbiol., 2010, vol. 76, no. 9, pp. 2778–2782.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, no. 2, pp. 248–254.PubMedCrossRefGoogle Scholar
  22. 22.
    Chaplin, M.F. and Kennedy J.F., Carbohydrate Analysis, 2nd ed., New York: Oxford University Press, 1994.Google Scholar
  23. 23.
    Bitter, T. and Muir, H.M., Analyt. Biochem., 1962, vol. 4, no. 4, pp. 330–334.PubMedCrossRefGoogle Scholar
  24. 24.
    Wang, L., Ma, F., Qu, Y., Sun, D., Li, A.J., Yu, B., and Guo, World J. Microbiol. Biotechnol., 2011, vol. 27, no. 11, pp. 2559–2565.CrossRefGoogle Scholar
  25. 25.
    Patil, S.V., Bathe, G.A., Patil, A.V., Patil, R.H., and Salunkea, Adv. Biotech., 2009. vol. 58, no. 7, pp. 15–16.Google Scholar
  26. 26.
    Ntsaluba, L., Oladele, A., Mabinya, L., and Okoh, A.I., African J. Microbiol. Res., 2011, vol. 5, no. 26, pp. 4533–4540.Google Scholar
  27. 27.
    Piyo, N., Cosa, S., Mabinya, L.V., and Okoh A. I., Mar. Drugs, 2011, vol. 9, no. 7, pp. 1232–1242.Google Scholar
  28. 28.
    Zhang, J., Wang, R., Jiang, P., and Liu, Z., Lett. Appl. Microbiol., 2002b, vol. 34, no. 3, pp. 178–181.PubMedCrossRefGoogle Scholar
  29. 29.
    Li, W.W., Zhou, W.Z., Zhang, Y.Z., Wang, J., and Zhu, X.B., Bioresour. Technol., 2008, vol. 99, no. 15, pp. 6893–6899.PubMedCrossRefGoogle Scholar
  30. 30.
    Mabinya, L.V., Cosa, S., Nwodo, U., and Okoh, A.I., Int. J. Mol. Sci., 2012, vol. 13, no. 1, pp. 1054–1065.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Suh, H.H., Kwon, G.S., Lee, C.H., Kim, H.S., and Oh, H.M., J. Ferment. Bioeng., 1997, vol. 84, no. 2, pp. 108–112.CrossRefGoogle Scholar
  32. 32.
    Li, Z., Chen, R., Lei, H., Shan, Z., Bai, T., Yu, Q., and Li, H.W., J. Microbiol. Biotechnol., 2009b, vol. 25, no. 5, pp. 745–752.CrossRefGoogle Scholar
  33. 33.
    Mabinya, L.V., Cosa, S., Mkwetshana, N., and Okoh, A.I., Molecules, 2011, vol. 16, no. 6, pp. 4358–4370.PubMedCrossRefGoogle Scholar
  34. 34.
    Lu, W.Y., Zhang, T., Zhang, D.Y., Li, C.H., Wen, J.P., and Du, L.X., Biochem. Eng. J., 2005, vol. 27, no. 1, pp. 1–7.CrossRefGoogle Scholar
  35. 35.
    Deng, S.B., Yu, G., and Ting, Y.P. Colloids Surf. B: Biointerf., 2005, vol. 44, no. 4, pp. 179–186.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • K. Okaiyeto
    • 1
    Email author
  • U. U. Nwodo
    • 1
  • L. V. Mabinya
    • 1
  • A. I. Okoh
    • 1
  1. 1.Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and MicrobiologyUniversity of Fort HareAliceSouth Africa

Personalised recommendations