Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds
- 306 Downloads
- 6 Citations
Abstract
Ecological samples rich in microbial diversity like cow dung, legume rhizosphere, fish waste and garden soil were used for isolation of chitosan-degrading microorganisms. Selected isolates were used for production of chitosanaseand food related bioactive compounds by conversion of biowaste. Production of glucosamine (Gln), N-acetylglucosamine (NAG), chitooligosaccharides (COS), antioxidants, antibacterial compounds and prebiotics was carried out by microbial fermentation of biowaste. The highest chitosanase activity (8 U/mL) was observed in Aspergillus sp. isolated from fish market waste and it could produce Gln and NAG while Streptomyces sp. isolated from garden soil was able to produce COS along with Gln and NAG. Radical scavenging activity was observed in culture supernatants of 35% of studied isolates, and 20% isolates secreted compounds which showed positive effect on growth of Bifidobacterium. Antibacterial compounds were produced by 40% of selected isolates and culture supernatants of two microbial isolates, Streptomyces zaomyceticus C6 and one of garden soil isolates, were effective against both gram positive and negative bacteria.
Keywords
Chitosan Chitin DPPH Apply Biochemistry BiowastePreview
Unable to display preview. Download preview PDF.
References
- 1.Kim, S.K. and Rajapakse, N., Carbohydr. Polym., 2005, vol. 62, no. 4, pp. 357–368.CrossRefGoogle Scholar
- 2.Aider, M. and Food, Sci., Technol., 2010, vol. 43, no. 10, pp. 837–842.Google Scholar
- 3.Shahidi, F., Arachchi, J.K.V., and Jeon, Y.J., Trends Food Sci. Technol., 1999, vol. 10, no. 12, pp. 37–51.CrossRefGoogle Scholar
- 4.Lee, H.W., Park, Y.S., Jung, J.S., and Shin, W.S., Anaerobe, 2002, vol. 8, no. 6, pp. 319–324.PubMedCrossRefGoogle Scholar
- 5.Jung, W.J., Kuk, J.H., Kim, K.Y., Jung, K.C., and Park, R.D., Protein Expres. Purif., 2006, vol. 45, no. 1, pp. 125–131.CrossRefGoogle Scholar
- 6.Crolle, G. and D’Este, E., Curr. Med. Res. Opin., 1980, vol. 7, no. 2, pp. 104–109.PubMedCrossRefGoogle Scholar
- 7.Kajimoto, O., Sakamoto, K., Takamori, Y., Kajitani, N., Imanishi, T., Matsuo, R., and Kajitani, Y., Nippon Rinsho Eiyo Gakkaishi, 1988, vol. 20, pp. 41–47.Google Scholar
- 8.Teli, M.D. and Sheikh, J., Int. J. Biol. Macromol., 2012, vol. 50, no. 5, pp. 1195–1200.PubMedCrossRefGoogle Scholar
- 9.Imoto, T. and Yagishita, K., Agric. Biol. Chem., 1971, vol. 35, no. 7, pp. 1154–1156.CrossRefGoogle Scholar
- 10.Struszczyk, K., Antczak, M.S., Walczak, M., Pomianowska, E., and Antczak, T., Carbohydr. Polym., 2009, vol. 78, no. 4, pp. 16–24.CrossRefGoogle Scholar
- 11.Yen, G.C. and Chen, H.Y., J. Agric. Food. Chem., 1995, vol. 43, pp. 27–32.CrossRefGoogle Scholar
- 12.De Man, J.C., Rogosa, M., and Sharpe, M.E., J. Appl. Bacteriol., 1960, vol. 23, no. 1, p. 130.CrossRefGoogle Scholar
- 13.Kim, P., Kang, T.H., Chung, K.J., Kim, I.S., and Chung, K.C., FEMS Microbiol. Lett., 2004, vol. 240, no. 1, pp. 31–39.PubMedCrossRefGoogle Scholar
- 14.Chang, W.T., Chen, Y.C., and Jao, C.L., Biores. Technol., 2007, vol. 98, no. 6, pp. 1224–1230.CrossRefGoogle Scholar
- 15.Somashekar, D. and Joseph, R., Biores.Technol., 1996, vol. 55, no. 1, pp. 35–45.CrossRefGoogle Scholar
- 16.Chitin, Chitosan and Related Enzymes, Zikakis, J.P., Ed., New York: Academic Press, 1984, pp. 161–179.Google Scholar
- 17.Bai, S., Kumar, M.R., Kumar, D.J.M., Balashanmugam, P., Balakumaran, M.D., and Kalaichelvan, P.T., Archives Appl. Sci. Res., 2012, vol. 4, no. 1, pp. 269–279.Google Scholar
- 18.Battaglia, E., Benoit, I., Brink, J., Wiebenga, A., Coutinho, P.M., Henrisatt, B., and Vries, R.P., BMC Genomics, 2011, vol. 12, no. 38. doi: 10.1186/1471-2164-12-38.Google Scholar
- 19.Wang, S.Y., Moyne, A.L., Thottapilly, G., Wu, S.J., Locy, R.D., and Singh, N.K., Enzyme Microb. Technol., 2001, vol. 28, no. 6, pp. 492–498.PubMedCrossRefGoogle Scholar
- 20.Shimosaka, M., Nogawa, M., Wang, X.Y., Kumehara, M., and Okazaki, M., Appl. Environ. Microbiol., 1995, vol. 61, no. 2, pp. 438–444.PubMedCentralPubMedGoogle Scholar
- 21.Kuk, J.H., Jung, W.J., Jo, G.H., Ahn, J.S., Kim, K.Y., and Park, R.D., Biotechnol. Lett., 2005, vol. 27, pp. 7–11.PubMedCrossRefGoogle Scholar
- 22.Binod, P., Sandhya, C., Suma, P., Szakacs, G., and Pandey, A., Biores. Technol., 2007, vol. 98, no. 14, pp. 2742–2748.CrossRefGoogle Scholar
- 23.Sinha, S., Dhakate, S.R., Kumar, P., Mathur, R.B., Tripathi, P., and Chand, S., Biores.Technol., 2012, vol. 115, pp. 152–157.CrossRefGoogle Scholar
- 24.Sinha, S., Kumar, R., Dhakate, S.R., and Chand, S., Int. J. Biosci. Biochem. Bioinform., 2011, vol. 1, no. 2, pp. 153–158.Google Scholar
- 25.Anderson, J.W., Nicolosi, R.J., Borzelleca, J.F., and Food, Chem., Toxicol., 2005, vol. 43, no. 12, pp. 187–201.Google Scholar
- 26.Reginster, J.Y. and Deroisy, R., Lancet, 2001, vol. 357, pp. 251–256.PubMedCrossRefGoogle Scholar
- 27.Carty, M.F., Med Hypotheses, 1996, vol. 47, no. 4, pp. 273–275.CrossRefGoogle Scholar
- 28.Qin, C., Gao, J., Wang, L., Zeng, L., Liu, Y., and Food, Chem., Toxicology, 2006, vol. 44, no. 4, pp. 855–861.Google Scholar
- 29.Xia, W., Liu, P., Zhang, J., and Chen, J., Food Hydrocolloids, 2011, vol. 25, no. 2, pp. 170–179.CrossRefGoogle Scholar
- 30.Sinha, S., Tripathi, P., and Chand, S., Appl. Biochem. Biotechnol., 2012, vol. 167, no. 5, pp. 1029–1039.PubMedCrossRefGoogle Scholar
- 31.Wang, S.L., Liu, K.C., Liang, T.W., Kuo, Y.H., and Wang, C.Y., Food Chem., 2010, vol. 119, no. 4, pp. 1380–1385.CrossRefGoogle Scholar
- 32.Kumar, A.B., Varadaraj, M.C., Gowda, L.R., and Tharanathan, R.N., Biochem. J., 2005, vol. 391, no. 2, pp. 167–175.CrossRefGoogle Scholar
- 33.Raafat, D., and Sahl, H.G., Microb. Biotechnol., 2009, vol. 2, no. 2, pp. 186–201.PubMedCentralPubMedCrossRefGoogle Scholar
- 34.Wang, S.L., Liang, T.W., and Yen, Y.H., Carbohydr. Polym., 2011, vol. 84, no. 2, pp. 732–742.CrossRefGoogle Scholar
- 35.Mussatto, S.I. and Manchilla, I.M., Carbohydr. Polym., 2007, vol. 68, no. 3, pp. 587–597.CrossRefGoogle Scholar