Advertisement

Applied Biochemistry and Microbiology

, Volume 50, Issue 2, pp 125–133 | Cite as

Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds

  • S. SinhaEmail author
  • S. Chand
  • P. Tripathi
Article

Abstract

Ecological samples rich in microbial diversity like cow dung, legume rhizosphere, fish waste and garden soil were used for isolation of chitosan-degrading microorganisms. Selected isolates were used for production of chitosanaseand food related bioactive compounds by conversion of biowaste. Production of glucosamine (Gln), N-acetylglucosamine (NAG), chitooligosaccharides (COS), antioxidants, antibacterial compounds and prebiotics was carried out by microbial fermentation of biowaste. The highest chitosanase activity (8 U/mL) was observed in Aspergillus sp. isolated from fish market waste and it could produce Gln and NAG while Streptomyces sp. isolated from garden soil was able to produce COS along with Gln and NAG. Radical scavenging activity was observed in culture supernatants of 35% of studied isolates, and 20% isolates secreted compounds which showed positive effect on growth of Bifidobacterium. Antibacterial compounds were produced by 40% of selected isolates and culture supernatants of two microbial isolates, Streptomyces zaomyceticus C6 and one of garden soil isolates, were effective against both gram positive and negative bacteria.

Keywords

Chitosan Chitin DPPH Apply Biochemistry Biowaste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, S.K. and Rajapakse, N., Carbohydr. Polym., 2005, vol. 62, no. 4, pp. 357–368.CrossRefGoogle Scholar
  2. 2.
    Aider, M. and Food, Sci., Technol., 2010, vol. 43, no. 10, pp. 837–842.Google Scholar
  3. 3.
    Shahidi, F., Arachchi, J.K.V., and Jeon, Y.J., Trends Food Sci. Technol., 1999, vol. 10, no. 12, pp. 37–51.CrossRefGoogle Scholar
  4. 4.
    Lee, H.W., Park, Y.S., Jung, J.S., and Shin, W.S., Anaerobe, 2002, vol. 8, no. 6, pp. 319–324.PubMedCrossRefGoogle Scholar
  5. 5.
    Jung, W.J., Kuk, J.H., Kim, K.Y., Jung, K.C., and Park, R.D., Protein Expres. Purif., 2006, vol. 45, no. 1, pp. 125–131.CrossRefGoogle Scholar
  6. 6.
    Crolle, G. and D’Este, E., Curr. Med. Res. Opin., 1980, vol. 7, no. 2, pp. 104–109.PubMedCrossRefGoogle Scholar
  7. 7.
    Kajimoto, O., Sakamoto, K., Takamori, Y., Kajitani, N., Imanishi, T., Matsuo, R., and Kajitani, Y., Nippon Rinsho Eiyo Gakkaishi, 1988, vol. 20, pp. 41–47.Google Scholar
  8. 8.
    Teli, M.D. and Sheikh, J., Int. J. Biol. Macromol., 2012, vol. 50, no. 5, pp. 1195–1200.PubMedCrossRefGoogle Scholar
  9. 9.
    Imoto, T. and Yagishita, K., Agric. Biol. Chem., 1971, vol. 35, no. 7, pp. 1154–1156.CrossRefGoogle Scholar
  10. 10.
    Struszczyk, K., Antczak, M.S., Walczak, M., Pomianowska, E., and Antczak, T., Carbohydr. Polym., 2009, vol. 78, no. 4, pp. 16–24.CrossRefGoogle Scholar
  11. 11.
    Yen, G.C. and Chen, H.Y., J. Agric. Food. Chem., 1995, vol. 43, pp. 27–32.CrossRefGoogle Scholar
  12. 12.
    De Man, J.C., Rogosa, M., and Sharpe, M.E., J. Appl. Bacteriol., 1960, vol. 23, no. 1, p. 130.CrossRefGoogle Scholar
  13. 13.
    Kim, P., Kang, T.H., Chung, K.J., Kim, I.S., and Chung, K.C., FEMS Microbiol. Lett., 2004, vol. 240, no. 1, pp. 31–39.PubMedCrossRefGoogle Scholar
  14. 14.
    Chang, W.T., Chen, Y.C., and Jao, C.L., Biores. Technol., 2007, vol. 98, no. 6, pp. 1224–1230.CrossRefGoogle Scholar
  15. 15.
    Somashekar, D. and Joseph, R., Biores.Technol., 1996, vol. 55, no. 1, pp. 35–45.CrossRefGoogle Scholar
  16. 16.
    Chitin, Chitosan and Related Enzymes, Zikakis, J.P., Ed., New York: Academic Press, 1984, pp. 161–179.Google Scholar
  17. 17.
    Bai, S., Kumar, M.R., Kumar, D.J.M., Balashanmugam, P., Balakumaran, M.D., and Kalaichelvan, P.T., Archives Appl. Sci. Res., 2012, vol. 4, no. 1, pp. 269–279.Google Scholar
  18. 18.
    Battaglia, E., Benoit, I., Brink, J., Wiebenga, A., Coutinho, P.M., Henrisatt, B., and Vries, R.P., BMC Genomics, 2011, vol. 12, no. 38. doi: 10.1186/1471-2164-12-38.Google Scholar
  19. 19.
    Wang, S.Y., Moyne, A.L., Thottapilly, G., Wu, S.J., Locy, R.D., and Singh, N.K., Enzyme Microb. Technol., 2001, vol. 28, no. 6, pp. 492–498.PubMedCrossRefGoogle Scholar
  20. 20.
    Shimosaka, M., Nogawa, M., Wang, X.Y., Kumehara, M., and Okazaki, M., Appl. Environ. Microbiol., 1995, vol. 61, no. 2, pp. 438–444.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Kuk, J.H., Jung, W.J., Jo, G.H., Ahn, J.S., Kim, K.Y., and Park, R.D., Biotechnol. Lett., 2005, vol. 27, pp. 7–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Binod, P., Sandhya, C., Suma, P., Szakacs, G., and Pandey, A., Biores. Technol., 2007, vol. 98, no. 14, pp. 2742–2748.CrossRefGoogle Scholar
  23. 23.
    Sinha, S., Dhakate, S.R., Kumar, P., Mathur, R.B., Tripathi, P., and Chand, S., Biores.Technol., 2012, vol. 115, pp. 152–157.CrossRefGoogle Scholar
  24. 24.
    Sinha, S., Kumar, R., Dhakate, S.R., and Chand, S., Int. J. Biosci. Biochem. Bioinform., 2011, vol. 1, no. 2, pp. 153–158.Google Scholar
  25. 25.
    Anderson, J.W., Nicolosi, R.J., Borzelleca, J.F., and Food, Chem., Toxicol., 2005, vol. 43, no. 12, pp. 187–201.Google Scholar
  26. 26.
    Reginster, J.Y. and Deroisy, R., Lancet, 2001, vol. 357, pp. 251–256.PubMedCrossRefGoogle Scholar
  27. 27.
    Carty, M.F., Med Hypotheses, 1996, vol. 47, no. 4, pp. 273–275.CrossRefGoogle Scholar
  28. 28.
    Qin, C., Gao, J., Wang, L., Zeng, L., Liu, Y., and Food, Chem., Toxicology, 2006, vol. 44, no. 4, pp. 855–861.Google Scholar
  29. 29.
    Xia, W., Liu, P., Zhang, J., and Chen, J., Food Hydrocolloids, 2011, vol. 25, no. 2, pp. 170–179.CrossRefGoogle Scholar
  30. 30.
    Sinha, S., Tripathi, P., and Chand, S., Appl. Biochem. Biotechnol., 2012, vol. 167, no. 5, pp. 1029–1039.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, S.L., Liu, K.C., Liang, T.W., Kuo, Y.H., and Wang, C.Y., Food Chem., 2010, vol. 119, no. 4, pp. 1380–1385.CrossRefGoogle Scholar
  32. 32.
    Kumar, A.B., Varadaraj, M.C., Gowda, L.R., and Tharanathan, R.N., Biochem. J., 2005, vol. 391, no. 2, pp. 167–175.CrossRefGoogle Scholar
  33. 33.
    Raafat, D., and Sahl, H.G., Microb. Biotechnol., 2009, vol. 2, no. 2, pp. 186–201.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Wang, S.L., Liang, T.W., and Yen, Y.H., Carbohydr. Polym., 2011, vol. 84, no. 2, pp. 732–742.CrossRefGoogle Scholar
  35. 35.
    Mussatto, S.I. and Manchilla, I.M., Carbohydr. Polym., 2007, vol. 68, no. 3, pp. 587–597.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyNew Delhi-16India
  2. 2.Schools of SciencesIndira Gandhi National Open UniversityNew Delhi-68India

Personalised recommendations