Applied Biochemistry and Microbiology

, Volume 49, Issue 5, pp 451–457 | Cite as

Purification and characterization of Streptomyces albidoflavus antifungal components

  • M. Swiontek BrzezinskaEmail author
  • U. Jankiewicz
  • A. Burkowska


Chitinolytic strain Streptomyces albidoflavus was isolated from soil of the central region of Poland. Its identification was based on analysis of 16S rRNA gene sequence. The colloidal chitin was revealed as the finest substrate for the production of chitinases by S. albidoflavus. The enzyme catalyzed the hydrolysis of the disaccharide 4-methylumbelliferyl-β-D-N,N′,N″-triacetylchitotriose most efficiently and was, therefore, classified as an endochitinase. The chitinase of S. albidoflavus was purified by applying the two-step procedure: fractionation with ammonium sulphate and chitin affinity chromatography. The molecular weight of the purified enzyme determined by SDS-PAGE was approximately 50 kDa. The enzyme was characterised as thermostable during 180 min of preincubation at the temperature of 35°C and 40°C. The activity of the enzyme was strongly inhibited in the presence of Hg2+ and Mn2+ ions, SDS but stabilized by Ca2+ and Mg2+ ions. Both purified and crude chitinases from S. albidoflavus inhibited the development of fungal phytopathogens. Purified chitinase inhibited the growth of Alternaria alternata, Fusarium culmorum, Fusarium oxysporum and Botrytis cinerea. Additionally, the crude chitinase inhibited the growth of Fusarium solani.


Streptomyces Chitin Apply Biochemistry Fusarium Chitinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahiya, N., Tewari, R., and Hoondal, G.S., Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 6, pp. 773–782.PubMedCrossRefGoogle Scholar
  2. 2.
    Bhattacharya, D., Nagpure, A., and Gupta, R.K., Crit. Rev. Biotechnol., 2007, vol. 27, no. 1, pp. 21–28.PubMedCrossRefGoogle Scholar
  3. 3.
    Gupta, C.P., Kumar, B., Dubey, R.C., and Maheshwari, D.K., BioControl, 2006, vol. 51, no. 6, pp. 821–835.CrossRefGoogle Scholar
  4. 4.
    Wang, S.L., Lin, T.Y., Yen, Y.H., Liao, H.F., and Chen, Y.J., Carbohydr. Res., 2006, vol. 341, no. 15, 2507–2515.PubMedCrossRefGoogle Scholar
  5. 5.
    El-Tarabily, K.A., Can. J. Bot., 2006, vol. 84, no. 2, pp. 211–222.CrossRefGoogle Scholar
  6. 6.
    Og, L.S., Choi, G.J., Choi, Y.H., Jang, K.S., Park, D.J., Kim, C.J., and Kim J.C., J. Microbiol. Biotechnol., 2008, vol. 18, no. 11., pp. 1741–1746.Google Scholar
  7. 7.
    Sousa, C.S., Soares, A.C.F., and Garrido, M.S., Sci. Agric. (Piracicaba, Braz.), 2008, vol. 65, no. 1, pp. 50–55.CrossRefGoogle Scholar
  8. 8.
    Dahiya, N., Tewari, R., Tiwari, R.P., and Hoondal, G.S., World J. Microbiol. Biotechnol., 2005, vol. 21, nos. 8–9, pp. 1611–1616.CrossRefGoogle Scholar
  9. 9.
    Vaidya, R.J., Shah, I.M., Vyas, P.R., and Chhatpar, H.S., World J. Microbiol. Biotechnol., 2001, vol. 17, no. 7, pp. 691–696.CrossRefGoogle Scholar
  10. 10.
    Watanabe, N., Kodama, Y., and Harayama, S., J. Microbiol. Methods, 2001, vol. 44, no. 3, pp. 253–262.PubMedCrossRefGoogle Scholar
  11. 11.
    Kutchma, A.J., Roberts, M.A., Knaebel, D.B., and Crawford, D.L., Biotechniques, 1998, vol. 24, no. 3, pp. 452–456.PubMedGoogle Scholar
  12. 12.
    McCreath, K.J. and Gooday, G.W., J. Microbiol. Methods, 1992, vol. 14, no. 4, pp. 229–237.CrossRefGoogle Scholar
  13. 13.
    Lindahl, B.D. and Finlay, R.D., New Phytologist, 2006, vol. 169, no. 2, pp. 389–397.PubMedCrossRefGoogle Scholar
  14. 14.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.PubMedCrossRefGoogle Scholar
  15. 15.
    Escott, G.M., Hearn, V.M., and Adams, D.J., Microbiology, 1998, vol. 144, no. 6, pp. 1575–1581.PubMedCrossRefGoogle Scholar
  16. 16.
    Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–688.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, S.L., Yieh, T.C., and Shih, I.L., Enzyme Microb. Technol., 1999, vol. 25, nos. 1–2, pp. 142–148.CrossRefGoogle Scholar
  18. 18.
    Eilenberg, H., Pnini-Cohen, S., Schuster, S., Movtchan, A., and Zilberstein, A., J. Exp. Bot., 2006, vol. 57, no. 11, pp. 2775–2784.PubMedCrossRefGoogle Scholar
  19. 19.
    Arora, N., Ahmad, T., Rajagopal, R., and Bhatnagar, R.K., Biochem. Biophys. Res., 2003, vol. 307, no. 3, pp. 620–625.CrossRefGoogle Scholar
  20. 20.
    Nielsen, M.N. and Sørensen, J., FEMS Microbiol. Ecol., 1999, vol. 30, no. 3, pp. 217–227.CrossRefGoogle Scholar
  21. 21.
    Mukherjee, G. and Sen, S.K., Curr. Microbiol., 2006, vol. 53, no. 4, pp. 265–269.PubMedCrossRefGoogle Scholar
  22. 22.
    Han, Y., Yang, B., Zhang, F., Miao, X., and Li, Z., Mar. Biotechnol., 2009, vol. 11, no. 1, pp. 132–140.PubMedCrossRefGoogle Scholar
  23. 23.
    Joo, G.J., Biotechnol. Lett., 2005, vol. 27, no. 19, pp. 1483–1486.PubMedCrossRefGoogle Scholar
  24. 24.
    Jankiewicz, U., Swiontek Brzezinska, M., and Saks, E., J. Biosci. Bioeng., 2012, vol. 113, no. 1, pp. 30–35.PubMedCrossRefGoogle Scholar
  25. 25.
    Ghasemi, S., Ahmadian, G., Jelodar, N.B., Rahimian, H., Ghandili, S., Dehestani, A., and Shariati, P., World J. Microbiol. Biotechnol., 2010, vol. 26, no. 8, pp. 1437–1443.CrossRefGoogle Scholar
  26. 26.
    Kim, H.S., Timmis, K.N., and Golyshin, P.N., Appl. Microbiol. Biotechnol., 2007, vol. 75, no. 7, pp. 1275–1283.PubMedCrossRefGoogle Scholar
  27. 27.
    Gupta, R.R., Saxena, K., Chaturvedi, P., and Virdi, J.S., J. Appl. Bacteriol., 1995, vol. 78, pp. 378–383.PubMedCrossRefGoogle Scholar
  28. 28.
    Margino, S., Nugroho, A.J., and Asmara, W., Ind. J. Biotechnol., 2010, vol. 15, no. 1, pp. 29–36.Google Scholar
  29. 29.
    Khiyami, M. and Masmali, I., Aust. J. Basic Appl. Sci., 2008, vol. 2, no. 4, pp. 943–948.Google Scholar
  30. 30.
    Yuli, P.E., Suhartono, M.T., Rukayadi, Y., Hwang, J.K., and Pyun, Y.R., Enzyme Microb. Tech., 2004, vol. 35, nos. 2–3, pp. 147–153.CrossRefGoogle Scholar
  31. 31.
    El-Abyad, M.S., El-Sayad, M.A., El-Shanshoury, A.R., and El-Sabbagh, S.M., Plant Soil, 1993, vol. 149, no. 2, pp. 185–195.CrossRefGoogle Scholar
  32. 32.
    Lee, Y.S., Chung, S.Y., and Ahn, S.C., Biores. Technol., 2007, vol. 98, no. 14, pp. 2734–2741.CrossRefGoogle Scholar
  33. 33.
    Wang, S.L., Chena, S.J., and Wang, Ch.L., Carbohydrate Res., 2008, vol. 343, no. 7, pp. 1171–1179.CrossRefGoogle Scholar
  34. 34.
    Gomes, R.C., Semedo, L.T.A.S., Soares, R.M.A., Linhares, L.F., Ulhoa, C.J., and Alviano, C.S., J. Appl. Microbiol., 2001, vol. 90, no. 4, pp. 653–661.PubMedCrossRefGoogle Scholar
  35. 35.
    Broadway, R. M., Williams, D.I., Kain, W.C., Harman, G.E., Lorito, M., and Labeda, D.P., Lett. Appl. Microbiol., 1995, vol. 20, no. 5, pp. 271–276.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. Swiontek Brzezinska
    • 1
    Email author
  • U. Jankiewicz
    • 2
  • A. Burkowska
    • 1
  1. 1.Department of Environmental Microbiology and Biotechnology, Faculty of Biology and Environmental ProtectionNicolaus Copernicus UniversityTorunPoland
  2. 2.Department of BiochemistryWarsaw University of Life Sciences, SGGWWarsawPoland

Personalised recommendations