Advertisement

Applied Biochemistry and Microbiology

, Volume 49, Issue 4, pp 352–359 | Cite as

Purification, characterization and USAGE of thermotolerant laccase FROM Bacillus sp. FOR biodegradation of synthetic dyes

  • G. KaushikEmail author
  • I. S. Thakur
Article

Abstract

A Bacillus sp. isolated from sediments of distillery unit was found to overproduce laccase when cultured in a synthetic media containing 1mM CuSO4 and 10% distillery spent wash as inducers along with 1% dextrose (w/v) and 0.1% tryptone (w/v) as additional carbon and nitrogen sources. The extracellular purified enzyme was highly thermostable with a calculated half-life of 23 min at 75°C. The optimal pH and temperature of the Bacillus sp. laccase were recorded to be 3.0 and 35°C, respectively. Sodium azide and solvents like methanol and acetonitrile completely inhibited enzyme activity. The average molecular weight of the purified enzyme as determined by SDS-PAGE and zymogam studies was around 70 kDa. Kinetic parameters were detected by using 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS) as substrate. At high ABTS concentrations (> 6 mM) a substrate inhibition phenomenon appeared and K M (0.60 mM), V max (983.00 U/min) values were determined. The polypeptide sequences showed significant similarity with Cudependent oxidoreductases through MALDI-TOF MS analysis. In addition, the crude Bacillus sp. laccase showed enormous potential for decolorization of various recalcitrant dyes. The apparent high stability of this enzyme makes it a good candidate for its possible application in biotechnology.

Keywords

Apply Biochemistry MALDI Laccase Activity Minimal Salt Medium Extracellular Laccase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourbonnais, R. and Paice, M.G., Appl. Microbiol. Biotechnol., 1992, vol. 36, no. 6, pp. 823–827.CrossRefGoogle Scholar
  2. 2.
    Solomon, E.I., Sundaram, U.M., and Machonkin, T.E., Chem. Rev., 1996, vol. 96, no. 7, pp. 2563–2605.CrossRefPubMedGoogle Scholar
  3. 3.
    McGuirl, M.A. and Dooley, D.M., Curr. Opin. Chem. Biol., 1993, vol. 3, no. 2, pp. 138–144.CrossRefGoogle Scholar
  4. 4.
    Ghindilis, A., Biochem. Soc. Trans., 2000, vol. 28, no. 2, pp. 84–90.PubMedGoogle Scholar
  5. 5.
    Hoff, T., Liu, S.Y., and Bollag, J.M., Appl. Environ. Microbiol., 1985, vol. 49, no. 5, pp. 1040–1045.PubMedGoogle Scholar
  6. 6.
    Call, H.P. and Mücke, I.J., Biotechnology, 1997, vol. 53, no. 2–3, pp. 163–202.Google Scholar
  7. 7.
    Claus, H., Arch. Microbiol., 2003, vol. 179, no. 3, pp. 145–150.PubMedGoogle Scholar
  8. 8.
    Bally, R., Thomas-Bauzon, D., Heulin, T., Balandreau, J., Richard, C., and Ley, J. de., Can. J. Microbiol., 1983, vol. 29, pp. 881–887.CrossRefGoogle Scholar
  9. 9.
    Sanchez-Amat, A. and Solano, F., Biochem. Biophys. Res. Commun., 1997, vol. 240, pp. 787–792.CrossRefPubMedGoogle Scholar
  10. 10.
    Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones, G.H., and Henriques, A.O., J. Biol. Chem., 2002, vol. 277, no. 21, pp. 18849–18859.CrossRefPubMedGoogle Scholar
  11. 11.
    Hullo, M.F., Moszer, I., Danchin, A., and Martın-Verstraete I., J. Bacteriol., 2001, vol. 183, no. 18, pp. 5426–5430.CrossRefPubMedGoogle Scholar
  12. 12.
    Endo, K., Beppu, K.T., and Ueda, K., Microbiology, 2002, vol. 148, pp. 1767–1776.PubMedGoogle Scholar
  13. 13.
    Kuznetsov, V.D., Filippova, S.N., and Rybakova, A.M., Mikrobiologiya, 1984, vol. 53, pp. 193–197.Google Scholar
  14. 14.
    Freeman, I.C., Nayar, P.G., Begley, T.P., and Villafranca, J.J., Biochemistry, vol. 1993, vol. 32, no. 18, pp. 4826–4830.CrossRefPubMedGoogle Scholar
  15. 15.
    Kim, C., Lorenz, W., Hoopes, J.T., and Dean, J.F.D., J. Bacteriol., 2001, vol. 183, no. 16, pp. 4866–4875.CrossRefPubMedGoogle Scholar
  16. 16.
    Thakur, I.S., Proc. Biochem., 2004, vol. 39, no. 11, pp. 1693–1699.CrossRefGoogle Scholar
  17. 17.
    Niku-Paavola, M.L. and Viikari, L., J. Mol. Catal. B: Enz., 2000, vol. 10, no. 4, pp. 435–444.CrossRefGoogle Scholar
  18. 18.
    Mansur, M., Arias, M.E., Copa-Patino, J.L., Flardh, M., and Gonzalez, A.E., Mycologia, 2003, vol. 95, no. 6, pp. 1013–1020.CrossRefPubMedGoogle Scholar
  19. 19.
    Bradford, M.M., Anal. Biochem., 1976, vol. 72, no. 1–2, pp. 248–254.CrossRefPubMedGoogle Scholar
  20. 20.
    Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.CrossRefPubMedGoogle Scholar
  21. 21.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Nucl. Acids Res., 1997, vol. 25, no. 17, pp. 3389–3402.CrossRefPubMedGoogle Scholar
  22. 22.
    Diamantidis, G., Effosse, A., Potier, P., and Bally, R., Soil Biol. Biochem., 2000, vol. 32, pp. 919–927.CrossRefGoogle Scholar
  23. 23.
    Arias, M.E., Arenas, M., Rodríguez, J., Soliveri, J., Ball, A.S., and Hernandez, M., App. Environ. Microbiol., 2003, vol. 69, no. 4, pp. 1953–1958.CrossRefGoogle Scholar
  24. 24.
    Singh, G., Capalash, N., Goel, R., and Sharma, P., Enz. Microb. Technol., 2007, vol. 41, no. 6–7, pp.794–799.CrossRefGoogle Scholar
  25. 25.
    Niladevi, K.N., Sukumaran, R.K., Jacob, N., Anisha, G.S., and Prema, P., Res. Microbiol., 2009, vol. 164, no. 1, pp. 105–113.CrossRefGoogle Scholar
  26. 26.
    Suzuki, T., Endo, K., Ito, M., Tsujibo, H., Miyamoto, K., and Inamori, Y.A., Biosci. Biotechnol. Biochem., 2003, vol. 67, no. 2, pp. 2167–2175.CrossRefPubMedGoogle Scholar
  27. 27.
    Machczynski, M.C., Samyn, E.B., and Canters, G.W., Protein Sci., 2004, vol. 13, no. 9, pp. 2388–2397.CrossRefPubMedGoogle Scholar
  28. 28.
    Miyata, N., Iwahori, K., and Fujita, M., J. Biosci. Bioeng., 2000, vol. 89, no. 2, pp. 145–150.CrossRefPubMedGoogle Scholar
  29. 29.
    D’Souza, D.T., Tiwari, R., Sah, A.K., and Raghukumar, C., Enz. Microb. Technol., 2006, vol. 38, nos. 3–4, pp. 504–511.CrossRefGoogle Scholar
  30. 30.
    Binz, T. and Canevascini, G., Curr. Microbiol., 1997, vol. 35, no. 5, pp. 278–281.CrossRefGoogle Scholar
  31. 31.
    Galhaup, C., Wagner, H., Hinterstoisser, B., and Haltrich, D., Enz. Microb. Technol., 2002, vol. 30, no. 4, pp. 529–536.CrossRefGoogle Scholar
  32. 32.
    Min, K.L., Kim, Y.H., Kim, Y.W., Jung, H.S., and Hah, Y.C., Arch. Biochem. Biophys., 2001, vol. 392, no. 2, pp. 279–286.CrossRefPubMedGoogle Scholar
  33. 33.
    Gianfreda, L., Xu, F., and Bollag, J.M., Biochem. J., 1999, vol. 3, no. 1, pp. 1–26.Google Scholar
  34. 34.
    Eggert, C., Temp, U., and Eriksson, K.L., Appl. Environ. Microbiol., 1996, vol. 62, no. 4, pp. 1151–1158.PubMedGoogle Scholar
  35. 35.
    Faure, D., Bouillant, M.L., and Bally, R., Appl. Environ. Microbiol., 1995, vol. 61, no. 3, pp. 1144–1146.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Department of Environmental ScienceCentral University of RajasthanBandarsindriIndia

Personalised recommendations