Applied Biochemistry and Microbiology

, Volume 48, Issue 5, pp 421–433 | Cite as

Biogas production from cellulose-containing substrates: A review

Article

Abstract

Anaerobic microbial conversion of organic substrates to various biofuels is one of the alternative energy sources attracting the greatest attention of scientists. The advantages of biogas production over other technologies are the ability of methanogenic communities to degrade a broad range of substrates and concomitant benefits: neutralization of organic waste, reduction of greenhouse gas emission, and fertilizer production. Cellulose-containing materials are good substrate, but their full-scale utilization encounters a number of problems, including improvement of the quality and amount of biogas produced and maintenance of the stability and high efficiency of microbial communities. We review data on microorganisms that form methanogenic cellulolytic communities, enzyme complexes of anaerobes essential for cellulose fiber degradation, and feedstock pretreatment, as biodegradation is hindered in the presence of lignin. Methods for improving biogas production by optimization of microbial growth conditions are considered on the examples of biogas formation from various types of plant and paper materials: office paper and cardboard.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, H.P., Science, 1995, vol. 268, no. 5213, p. 955.PubMedCrossRefGoogle Scholar
  2. 2.
    Claassen, P.A.M. and de Vrije, T., Int. J. Hydrogen Energy, 2006, vol. 31, no. 11, pp. 1416–1423.CrossRefGoogle Scholar
  3. 3.
    Björnsson, P. and Mattiasson, B., Trends Biotechnol., 2008, vol. 26, no. 1, pp. 7–13.CrossRefGoogle Scholar
  4. 4.
    Munasinghe, P.C. and Khanal, S.K., Bioresour. Technol., 2010, vol. 101, no. 13, pp. 5013–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Peralta-Yahya, P.P. and Keasling, J.D., Biotech. J., 2010, vol. 5, no. 2, pp. 147–162.CrossRefGoogle Scholar
  6. 6.
    Weiland, P., Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 4, pp. 849–860.PubMedCrossRefGoogle Scholar
  7. 7.
    Antizar-Ladislao, B. and Turrion-Gomez, J.L., Biofuels Bioprod. Bioref., 2008, vol. 2, no. 5, pp. 455–469.CrossRefGoogle Scholar
  8. 8.
    Rice, W., Int. J. Hydrogen Energy, 2006, vol. 31, no. 14, pp. 1955–1963.CrossRefGoogle Scholar
  9. 9.
    Koike, Y., An M., Tang Y., Syo T., Osaka N., Morimura S., Kida K, J. Biosci. Bioeng., 2009, vol. 108, no. 6, pp. 508–512.PubMedCrossRefGoogle Scholar
  10. 10.
    Rude, M.A. and Scjirmer, A., Curr. Opin. Microbiol., 2009, vol. 12, no. 3, pp. 274–281.PubMedCrossRefGoogle Scholar
  11. 11.
    Angelidaki, I., Karakashev, D., Batstone, D.J., Plugge, C.M., and Stams, A.J., in Methanogenesis (Methods in Enzymology), Rosenzweig, C. and Ragsdale, W., Eds., Academic Press, 2011, vol. 494, pp. 327–351.Google Scholar
  12. 12.
    Kalyuzhnyi, S.V., Puzankov, A.G., and Varfolomeev, S.D., Biogaz: problemy i resheniya (Biogas: Problems and Solutions), Itogi nauki i tekhniki. Ser. Biotekhnol. (Advances in Science and Technology, Ser. Biotechnol.), Moscow: VINITI, 1988, vol. 21.Google Scholar
  13. 13.
    Pantskhava, E.S. and Davidenko, E.V., Biotekhnologiya, 1990, vol. 6, no. 4, pp. 49–53.Google Scholar
  14. 14.
    Glissmann, K., Hammer, E., and Conrad, R., FEMS Microbiol. Ecol., 2005, vol. 52, no. 1, pp. 43–48.PubMedCrossRefGoogle Scholar
  15. 15.
    Kapdi, S.S., Vijay, V.K., Rajesh, S.K., and Prasad, R., Renew. Energy, 2005, vol. 30, no. 8, pp. 1195–1202.CrossRefGoogle Scholar
  16. 16.
    Rasi, S., Veijanen, A., and Rintala, J., Energy, 2007, vol. 32, no. 8, pp. 1375–1380.CrossRefGoogle Scholar
  17. 17.
    Bochiwal, C., Malley, C., and Chong, J.P.J., in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer, 2010, pp. 2810–2815.Google Scholar
  18. 18.
    Hecht, C. and Griehl, C., Bioresour. Technol., 2009, vol. 100, no. 2, pp. 654–658.PubMedCrossRefGoogle Scholar
  19. 19.
    Hesselsoe, M., Boysen, S., Iversen, N., Jorgensen, L., Murrell, J.C., McDonald, I., Radajewski, S., Thestrup, H., and Roslev, P., Biodegradation, 2005, vol. 16, no. 5, pp. 435–448.PubMedCrossRefGoogle Scholar
  20. 20.
    Ficker, M., Krastel, K., Orlicky, S., and Edwards, E., Appl. Environ. Microbiol., 1999, vol. 65, no. 12, pp. 5576–5585.PubMedGoogle Scholar
  21. 21.
    Gassanova, L.G., Netrusov, A.I., Teplyakov, V.V., and Modigell, M., Desalination, 2006, vol. 198, nos. 1–3, pp. 56–66.CrossRefGoogle Scholar
  22. 22.
    Verstraete, W., in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer, 2010, pp. 3333–3336.CrossRefGoogle Scholar
  23. 23.
    Ambulkar, A.R. and Shekdar, A.V., Res. Conserv. Recycl., 2004, vol. 40, no. 2, pp. 111–128.CrossRefGoogle Scholar
  24. 24.
    Eze, J.I. and Uzodinma, E.O., Pacific J. Sci. Technol., 2009, vol. 10, no. 2, pp. 942–948.Google Scholar
  25. 25.
    Ferry, J.G., Curr. Opin. Biotechnol., 2011, vol. 22, no. 3, pp. 351–357.PubMedCrossRefGoogle Scholar
  26. 26.
    Weiland, P., Eng. Life Sci., 2006, vol. 6, no. 3, pp. 302–309.CrossRefGoogle Scholar
  27. 27.
    Cheunbarn, T. and Pagilla, K.R., J. Environ. Eng., 2000, vol. 126, no. 9, pp. 796–801.CrossRefGoogle Scholar
  28. 28.
    Cabirol, N., Rojas, OropezaM., and Noyola, A., Wat. Sci. Technol., 2002, vol. 45, no. 10, pp. 269–274.Google Scholar
  29. 29.
    Sahlstrom, L., Bioresour. Technol., 2003, vol. 87, no. 2, pp. 161–166.PubMedCrossRefGoogle Scholar
  30. 30.
    Oleskowicz-Popiela, P., Lisiecki, P., Holm-Nielsen, J.B., Thomsen, A.B., and Thomsen, M.H., Bioresour. Technol., 2008, vol. 99, no. 13, pp. 5327–5334.CrossRefGoogle Scholar
  31. 31.
    Lubken, M., Gehring, T., and Wichern, M., Appl. Microbiol. Biotechnol., 2010, vol. 85, no. 6, pp. 1643–1652.PubMedCrossRefGoogle Scholar
  32. 32.
    Yadvika, S., Sreekrishnan, T.R., Sreekrishnan, T.R., and Kohli, S., Bioresour. Technol., 2004, vol. 95, no. 1, pp. 1–10.PubMedCrossRefGoogle Scholar
  33. 33.
    Smiti, N., Ollivier, B., and Garcia, J.L., FEMS Microbiol. Letts., 1986, vol. 35, no. 1, pp. 93–97.CrossRefGoogle Scholar
  34. 34.
    Nozhevnikova, A.N., Zepp, K., Vazquez, F., Zehnder, A.J.B., and Holliger, C., Appl. Environ. Microbiol., 2003, vol. 69, no. 3, pp. 1832–1835.PubMedCrossRefGoogle Scholar
  35. 35.
    Li, T., Mazeas, SghirA., Leblon, G., and Bouchez, T., Environ. Microbiol., 2009, vol. 11, no. 4, pp. 889–904.PubMedCrossRefGoogle Scholar
  36. 36.
    Leven, L., Eriksson, A.R.B., and Schnurer, A., FEMS Microbiol. Ecol., 2007, vol. 59, no. 3, pp. 683–693.PubMedCrossRefGoogle Scholar
  37. 37.
    Ferrer, I., Vazquez, F., and Font, X., Bioresour. Technol., 2010, vol. 101, no. 9, pp. 2972–2980.PubMedCrossRefGoogle Scholar
  38. 38.
    Gao, W.J., Leung, K.T., Qin, W.S., and Liao, B.Q., Bioresour. Technol., 2011, vol. 102, no. 19, pp. 8733–8740.PubMedCrossRefGoogle Scholar
  39. 39.
    Wijekoon, K.C., Visvanathan, C., and Abeynayaka, A., Bioresour. Technol., 2011, vol. 102, no. 9, pp. 5353–5360.PubMedCrossRefGoogle Scholar
  40. 40.
    Zavarzin, G.A., Microbiology, 1997, vol. 66, no. 5, pp. 558–561.Google Scholar
  41. 41.
    Zavarzin, G.A., Mikrobiologiya, 1989, vol. 51, no. 6, pp. 3–14.Google Scholar
  42. 42.
    Stams, A.J.M., Antonie van Leeuwenhoek, 1994, vol. 66, nos. 1–3, pp. 271–294.CrossRefGoogle Scholar
  43. 43.
    Boone, D.R., Whitman, W.B., and Rouviere, P., in Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, Ferry, J.G., Ed., New York: Chapman Hall, 1993, pp. 35–80.Google Scholar
  44. 44.
    Bergey’s Manual of Systematic Bacteriology, 2nd ed., Garrity, G., Ed., New York: Springer-Verlag, 2001.Google Scholar
  45. 45.
    Ferry, G., Annu. Rev. Microbiol., 2010, vol. 64, pp. 453–473.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu, Y., in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer, 2010, pp. 549–558.Google Scholar
  47. 47.
    Bapteste, E., Brochier, C., and Boucher, Y., Archaea, 2005, vol. 1, no. 5, pp. 353–363.PubMedCrossRefGoogle Scholar
  48. 48.
    Anderson, K.L., Appl. Environ. Microbiol., 1995, vol. 61, no. 4, pp. 1488–1491.PubMedGoogle Scholar
  49. 49.
    Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, Ferry, J.G., Ed., New York: Chapman Hall, 1993.Google Scholar
  50. 50.
    Schink, B. and Zeikus, J.G., J. General Microbiol., 1982, vol. 128, no. 2, pp. 393–404.Google Scholar
  51. 51.
    Pol, A. and Demeyer, D.I., Appl. Environ. Microbiol., 1988, vol. 54, no. 3, pp. 832–834.PubMedGoogle Scholar
  52. 52.
    Schink, B., Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 2, pp. 262–280.PubMedGoogle Scholar
  53. 53.
    Thauer, R. and Shima, S., Nature, 2006, vol. 440, no. 7086, pp. 878–879.PubMedCrossRefGoogle Scholar
  54. 54.
    Rodhe, H., Science, 1990, vol. 248, no. 8, pp. 1217–1219.PubMedCrossRefGoogle Scholar
  55. 55.
    Pavlostathis, S.G., Miller, T.L., and Wolin, M.J., Appl. Microbiol. Biotechnol., 1990, vol. 33, no. 1, pp. 109–116.CrossRefGoogle Scholar
  56. 56.
    Leschine, S.B., Annu. Rev. Microbiol., 1995, vol. 49, pp. 399–426.PubMedCrossRefGoogle Scholar
  57. 57.
    Lynd, L.R., Weimer, P.J., van Zyl, W.H., and Pretorius, I.S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.PubMedCrossRefGoogle Scholar
  58. 58.
    Burrell, P.C., O’sullivan, C., Song, H., Clarke, W.P., and Blackall, L.L., Appl. Environ. Microbiol., 2004, vol. 70, no. 4, pp. 2414–2419.PubMedCrossRefGoogle Scholar
  59. 59.
    Show, K.Y., Tay, J.H., and Hung, Y., Env. Bioeng. Handbook Environ. Eng., 2010, vol. 11, pp. 773–807.Google Scholar
  60. 60.
    Cotta, M.A., Appl. Environ. Microbiol., 1992, vol. 58, no. 1, pp. 48–54.PubMedGoogle Scholar
  61. 61.
    Anderson, I., Ulrich, L.E., Lupa, B., Susanti, D., Porat, I., Hooper, S.D., Lykidis, A., Sieprawska-Lupa, M., Dharmarajan, L., Goltsman, E., Lapidus, A., Saunders, E., Han, C., Land, M., Lucas, S., Mukhopadhyay, B., Whitman, W.B., Woese, C., Bristow, J., and Kyrpides, J., PLoS One, 2009, vol. 4, p. e5797.PubMedCrossRefGoogle Scholar
  62. 62.
    Bokkenheuser, V., Clin. Infect. Dis., 1993, vol. 16, no. 4, pp. 427–434.CrossRefGoogle Scholar
  63. 63.
    Wang, X., Conway, P.L., Brown, I.L., and Evans, A.J., Appl. Environ. Microbiol., 1999, vol. 65, no. 11, pp. 4848–4854.PubMedGoogle Scholar
  64. 64.
    Zhang, T., Liu, H., and Fang, H.H.P., J. Environ. Manag., 2003, vol. 69, no. 2, pp. 149–156.CrossRefGoogle Scholar
  65. 65.
    Heinrichova, K., Wojciechowicz, M., and Ziolecki, A., J. Gen. Microbiol., 1985, vol. 131, no. 8, pp. 2053–2058.PubMedGoogle Scholar
  66. 66.
    Hespell, R.B., Wolf, R., and Bothast, R.J., Appl. Environ. Microbiol., 1987, vol. 53, no. 12, pp. 2849–2853.PubMedGoogle Scholar
  67. 67.
    Duskova, D. and Marouek, M., Lett. Appl. Microbiol., 2001, vol. 33, no. 3, pp. 159–163.PubMedCrossRefGoogle Scholar
  68. 68.
    Sirotek, K., Slovakova, L., Kopecny, J., and Marounek, M., Lett. Appl. Microbiol., 2004, vol. 38, no. 4, pp. 327–332.PubMedCrossRefGoogle Scholar
  69. 69.
    Mahadevan, S., Erfle, J.D., and Sauer, F.D., J. Anim. Sci., 1980, vol. 50, no. 4, pp. 723–728.PubMedGoogle Scholar
  70. 70.
    Barker, H.A., Annu. Rev. Biochem., 1981, vol. 50, pp. 23–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Egli, T., Adv. Microb. Ecol., 1995, vol. 14, pp. 305–386.CrossRefGoogle Scholar
  72. 72.
    Wallace, R.J., J. Nutr., 1996, vol. 126, no. 4, pp. 1326–1334.Google Scholar
  73. 73.
    Baena, S., Fardeau, M.-L., Ollivier, B., Labat, M., Thomas, P., Garcia, J.-L., and Patel, B.K.C., Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 975–982.PubMedCrossRefGoogle Scholar
  74. 74.
    Diaz, C., Baena, S., Patel, B.K.C., and Fardeau, M.L., Braz. J. Microbiol., 2010, vol. 41, no. 3, pp. 707–717.CrossRefGoogle Scholar
  75. 75.
    Sieber, J.R., McInerney, M.J., Plugge, C.M., Schink, B., and Gunsalus, R.P.K., in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springer, 2010, pp. 338–350.Google Scholar
  76. 76.
    Stams, A.J.M., de Bok, F.A.M., Plugge, C.M., van Eekert, M.H.A., Dolfing, J., and Schraa, G., Environ. Microbiol., 2006, vol. 8, no. 3, pp. 371–382.PubMedCrossRefGoogle Scholar
  77. 77.
    Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R., Nature, 2005, vol. 435, no. 7045, pp. 1098–1101.PubMedCrossRefGoogle Scholar
  78. 78.
    Hattori, S., Galushko, A.S., Kamagata, Y., and Schink, B., J. Bacteriol., 2005, vol. 187, no. 10, pp. 3471–3476.PubMedCrossRefGoogle Scholar
  79. 79.
    Zinder, S.H., in Methanogenesis: Ecology, Physiology, Biochemistry and Genetics, Ferry, J.G., Ed., New York: Chapman Hall, 1993, pp. 128–206.Google Scholar
  80. 80.
    Davies, Z.S., Mason, D., Brooks, A.E., Griffith, G.W., Merry, R.J., and Theodorou, M.K., Anim. Feed Sci. Technol., 2000, vol. 83, nos. 3–4, pp. 205–221.CrossRefGoogle Scholar
  81. 81.
    Whitman, W.B., Bowen, T.L., and Boone, D.R., in The Methanogenic Bacteria. The Prokariotes, 2 ed., Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K., Eds., New York: Springer-Verlag, 1992, pp. 719–760.Google Scholar
  82. 82.
    Stams, A.J.M., Oude Elferink S.J.W.H., Westermann P, Adv. Biochem. Eng. Biotechnol., 2003, vol. 81, pp. 31–56.PubMedGoogle Scholar
  83. 83.
    Ferry, J.G., J. Bacteriol., 1992, vol. 174, no. 17, pp. 5489–5495.PubMedGoogle Scholar
  84. 84.
    Yu, Y., Kim, J., and Hwang, S., Biotechnol. Bioeng., 2006, vol. 93, no. 3, pp. 424–433.PubMedCrossRefGoogle Scholar
  85. 85.
    Kim, I.S., Hwang, M.H., Jang, N.J., Hyun, S.H., and Lee, S.T., Int. J. Hydr. Energ., 2004, vol. 29, no. 11, pp. 1133–1140.Google Scholar
  86. 86.
    Staley, B.F., Reyes, III F.L., and Barlaz, M.A., Appl. Environ. Microbiol., 2011, vol. 77, no. 7, pp. 2381–2391.PubMedCrossRefGoogle Scholar
  87. 87.
    Jones, E.J., Voytek, M.A., Corum, M.D., and Orem, W.H., Appl. Environ. Microbiol., 2010, vol. 76, no. 21, pp. 7013–7022.PubMedCrossRefGoogle Scholar
  88. 88.
    Vasilov, R.G., Vest. Biotekhnol. Fiz-Khim. Biol. Im Yu.A. Ovchinnikova, 2007, vol. 3, no. 3, pp. 54–61.Google Scholar
  89. 89.
    Shmandii, V.M., Nikiforov, V.V., Alferov, V.P., Kharlamova, E.V., and Pronin, V.A., Gig. Sanit., 2010, no. 6, pp. 35–37.Google Scholar
  90. 90.
    Samson, R. and Leduy, A., Biotechnol. Bioeng., 1986, vol. 28, no. 7, pp. 1014–1023.PubMedCrossRefGoogle Scholar
  91. 91.
    de Schamphelaire, L. and Verstraete, W., Biotechnol. Bioeng., 2009, vol. 103, no. 2, pp. 296–304.PubMedCrossRefGoogle Scholar
  92. 92.
    Lynd, L.R., Wyman, C.E., and Gerngross, T.U., Biotechnol. Prog., 1999, vol. 15, no. 5, pp. 777–793.PubMedCrossRefGoogle Scholar
  93. 93.
    Saha, B.C., J. Ind. Microbiol. Biotechnol., 2003, vol. 30, pp. 279–291.PubMedCrossRefGoogle Scholar
  94. 94.
    Pauly, M. and Keegstra, K., Plant J., 2008, vol. 54, no. 4, pp. 559–568.PubMedCrossRefGoogle Scholar
  95. 95.
    Skomarovsky, A.A., Markov, A.V., Gusakov, A.V., Kondrat’eva, E.G., Okunev, O.N., Bekkarevich, A.O., Matys, V.Yu., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2006, vol. 42, no. 6, pp. 592–597.CrossRefGoogle Scholar
  96. 96.
    Schwarz, W.H., Appl. Microbiol. Biotechnol., 2001, vol. 56, nos. 5–6, pp. 634–649.PubMedCrossRefGoogle Scholar
  97. 97.
    Sun, Y. and Cheng, J., Bioresour. Technol., 2002, vol. 83, no. 1, pp. 1–11.PubMedCrossRefGoogle Scholar
  98. 98.
    Bagnara, C., Gaudin, C., and Belaich, J.P., Appl. Microbiol. Biotechnol., 1987, vol. 26, no. 2, pp. 170–176.CrossRefGoogle Scholar
  99. 99.
    Wachinger, G., Bronnenmeier, K., Staudenbauer, W.L., and Schrempf, H., Appl. Environ. Microbiol., 1989, vol. 55, no. 10, pp. 2653–2657.PubMedGoogle Scholar
  100. 100.
    Gallagher, J., Winters, A., Barron, N., McHale, L., and McHale, A.P., Biotechnol. Lett., 1996, vol. 18, no. 5, pp. 537–540.CrossRefGoogle Scholar
  101. 101.
    Bergquist, P.L., Gibbs, M.D., Morris, D.D., Te’o, V.S.J., Saul, D.J., and Morgan, H.W., FEMS Microbiol. Ecol., 1999, vol. 28, no. 2, pp. 99–110.CrossRefGoogle Scholar
  102. 102.
    Wirth, S. and Ulrich, A., Syst. Appl. Microbiol., 2002, vol. 25, no. 4, pp. 584–591.PubMedCrossRefGoogle Scholar
  103. 103.
    Haichar, F.Z., Achouak, W., Christen, R., Heulin, T., Marol, C., Marais, M., Mougel, C., Ranjard, L., Balesdent, J., and Berge, O., Environ. Microbiol., 2007, vol. 9, no. 3, pp. 625–634.PubMedCrossRefGoogle Scholar
  104. 104.
    Okeke, B.C. and Lu, J., Appl. Biochem. Biotechnol., 2011, vol. 163, no. 7, pp. 869–881.PubMedCrossRefGoogle Scholar
  105. 105.
    Patel, G.B., Khan, A.W., Agnew, B.J., and Colvin, J.R., Int. J. Syst. Bacteriol., 1980, vol. 30, no. 1, pp. 179–185.CrossRefGoogle Scholar
  106. 106.
    Perevalova, A.A., Svetlichny, V.A., Chernyh, N.A., Kostrikina, N.A., Tourova, T.P., Kuznetsov, B.B., and Bonch-Osmolovkskaya, E.A., Int. J. Syst. Evol. Microbiol., 2005, vol. 55, no. 3, pp. 995–999.PubMedCrossRefGoogle Scholar
  107. 107.
    Shapiro, J.A., Annu. Rev. Microbiol., 1998, vol. 52, pp. 81–104.PubMedCrossRefGoogle Scholar
  108. 108.
    Oleskin, A.V., Botvinko, I.V., and Tsavkelova, E.A., Microbiology, 2000, vol. 69, no. 3, pp. 249–265.CrossRefGoogle Scholar
  109. 109.
    Tsavkelova, E.A., Klimova, S.Yu., Cherdyntseva, T.A., and Netrusov, A.I., Appl. Biochem. Microbiol., 2006, vol. 42, no. 3, pp. 229–235.CrossRefGoogle Scholar
  110. 110.
    Xu, Q., Gao, W., Ding, S., Kenig, R., Shoham, Y., Bayer, E.A., and Lamed, R., J. Bacteriol., 2003, vol. 185, no. 15, pp. 4548–4557.PubMedCrossRefGoogle Scholar
  111. 111.
    Bayer, E.A., Lamed, R., and Himmel, M.E., Curr. Opinion BioTechnol., 2007, vol. 18, pp. 237–245.CrossRefGoogle Scholar
  112. 112.
    Rabinovich, M.L. and Mel’nik, M.S., Usp. Biol. Khim., 2000, vol. 40, pp. 205–266.Google Scholar
  113. 113.
    Ljungdahl, L.G., Ann. N. Y. Acad. Sci., 2008, vol. 1125, pp. 308–321.PubMedCrossRefGoogle Scholar
  114. 114.
    Kato, S., Haruta, S., Cui, Z.J., Ishii, M., and Igarashi, Y., Appl. Environ. Microbiol., 2005, vol. 71, no. 11, pp. 7099–7106.PubMedCrossRefGoogle Scholar
  115. 115.
    O’sullivan, C.A., Burrell, P.C., Clarke, W.P., and Blackall, L.L., Biotech. Bioeng., 2005, vol. 92, no. 7, pp. 871–878.CrossRefGoogle Scholar
  116. 116.
    Chassard, C., Delmas, E., Robert, C., and Bernalier-Donadille, A., FEMS Microbiol. Ecol., 2010, vol. 74, no. 1, pp. 205–213.PubMedCrossRefGoogle Scholar
  117. 117.
    Speece, R.E., Anaerobic Biotechnology for Industrial Wastewaters, Nashville, TN: Archae Press, 1996, pp. 29–58.Google Scholar
  118. 118.
    Diaz, E.E., Stams, A.J.M., Amils, R., and Sanz, J.L., Appl. Environ. Microbiol., 2006, vol. 72, no. 7, pp. 4942–4949.PubMedCrossRefGoogle Scholar
  119. 119.
    Farhadian, M., Borghei, M., and Umrania, V.V., Bioresour. Technol., 2007, vol. 98, no. 16, pp. 3080–3083.PubMedCrossRefGoogle Scholar
  120. 120.
    Tabatabaei, M., Rahim, R.A., Abdullah, N., Wright, A.G., Shirai, Y., Sakai, K., Sulaiman, A., and Hassan, M.A., Pichia stipitis, Proc. Biochem., 2010, vol. 45, pp. 1214–1225.CrossRefGoogle Scholar
  121. 121.
    Clarke, W.P., Waste Manage. Res., 2000, vol. 18, no. 6, pp. 510–524.Google Scholar
  122. 122.
    Song, H. and Clarke, P., Biores. Technol., 2009, vol. 100, pp. 1268–1273.CrossRefGoogle Scholar
  123. 123.
    Pommier, S., Manas, L.A., and Lefebvre, X., Biores. Technol., 2010, vol. 101, pp. 463–468.CrossRefGoogle Scholar
  124. 124.
    Eleazer, W.E., Odle, W.S., Wang, Y.S., and Barlaz, M.A., Environ. Sci. Technol., 1997, vol. 31, no. 3, pp. 911–917.CrossRefGoogle Scholar
  125. 125.
    Wolfe, R.S., ASM News, 1996, vol. 62, no. 10, pp. 529–534.Google Scholar
  126. 126.
    Hendriks, A.T. and Zeeman, G., Bioresour. Technol., 2009, vol. 100, no. 1, pp. 10–18.PubMedCrossRefGoogle Scholar
  127. 127.
    Zheng, Y., Pan, Z., and Zhang, R., Int. J. Agric. Biol. Eng., 2009, vol. 2, no. 3, pp. 51–68.Google Scholar
  128. 128.
    Ha, S.H. and Mai, N.L., An G., Koo Y.M, Bioresour. Technol., 2011, vol. 102, no. 2, pp. 1214–1219.PubMedCrossRefGoogle Scholar
  129. 129.
    Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M.J., and Horvath, I.S., Bioresour. Technol., 2010, vol. 101, no. 4, pp. 1206–1212.PubMedCrossRefGoogle Scholar
  130. 130.
    Fernquist, T., Ploger, A., and Schmidt, A.S., Biotechnol. Bioeng., 1996, vol. 49, no. 5, pp. 568–577.CrossRefGoogle Scholar
  131. 131.
    Schell, D.J., Ruth, M.F., and Tucker, M.P., Appl. Biochem. Biotechnol., 1999, vol. 77, nos. 1–3, pp. 67–81.CrossRefGoogle Scholar
  132. 132.
    Thring, R.W., Chorent, E., and Overend, R., Biomass, 1990, vol. 23, no. 4, pp. 289–305.CrossRefGoogle Scholar
  133. 133.
    Akin, D.E., Rigsby, L.L., Sethuraman, A., and Morrison, W.H., III., Gamble G.R., Eriksson K.E.L, Appl. Environ. Microbiol., 1995, vol. 61, no. 4, pp. 1591–1598.PubMedGoogle Scholar
  134. 134.
    Muthangya, M., Mshandete, A.M., and Kivaisi, A.K., Int. J. Mol. Sci., 2009, vol. 10, no. 11, pp. 4805–4815.PubMedCrossRefGoogle Scholar
  135. 135.
    Bayer, E.A., Morag, E., and Lamed, R., Trends Biotechnol., 1994, vol. 12, no. 9, pp. 379–386.PubMedCrossRefGoogle Scholar
  136. 136.
    Barlaz, M., Ham, R.K., and Shaefer, D.M., CRC Crit. Rev. Environ. Control, 1990, vol. 19, no. 6, pp. 557–584.CrossRefGoogle Scholar
  137. 137.
    Owens, J.M. and Chynoweth, D.P., Wat. Sci. Tech., 1993, vol. 27, no. 2, pp. 1–14.Google Scholar
  138. 138.
    Desvaux, M., Guedon, E., and Petitdemange, H., Appl. Environ. Microbiol., 2000, vol. 66, no. 6, pp. 2461–2470.PubMedCrossRefGoogle Scholar
  139. 139.
    Desvaux, M., Guedon, E., and Petitdemange, H., J. Bacteriol., 2001, vol. 183, no. 1, pp. 119–130.PubMedCrossRefGoogle Scholar
  140. 140.
    O’sullivan, C.A., Burrell, P.C., Clarke, W.P., and Blackall, L.L., Bioresour. Technol., 2008, vol. 99, no. 11, pp. 4723–4731.PubMedCrossRefGoogle Scholar
  141. 141.
    Weimer, P.J., Lopezguisa, J.M., and French, A.D., Appl. Environ. Microbiol., 1990, vol. 56, no. 8, pp. 2421–2429.PubMedGoogle Scholar
  142. 142.
    Mourino, F., Akkarawongsa, R., and Weimer, P.J., J. Dairy Sci., 2001, vol. 84, no. 4, pp. 848–859.PubMedCrossRefGoogle Scholar
  143. 143.
    O’sullivan, C.A., Burrell, P.C., Clarke, W.P., and Blackall, L.L., Bioresour. Technol., 2006, vol. 97, no. 18, pp. 2356–2363.PubMedCrossRefGoogle Scholar
  144. 144.
    Lynd, L.R., Grethlen, H.E., and Wolkin, R.H., Appl. Environ. Microbiol., 1989, vol. 55, no. 12, pp. 3131–3139.PubMedGoogle Scholar
  145. 145.
    Desvaux, M., Guedon, E., and Petitdemange, H., Appl. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 3837–3845.PubMedCrossRefGoogle Scholar
  146. 146.
    Tsavkelova, E.A., Egorova, M.A., Petrova, E.V., and Netrusov, A.I., Mosc. Univ. Biol. Bull., 2012, no. 2, pp. 36–42.Google Scholar
  147. 147.
    Tsavkelova, E.A., Egorova, M.A., Petrova, E.V., and Netrusov, A.I., Appl. Biochem. Microbiol., 2012, vol. 48, no. 4, pp. 417–424.CrossRefGoogle Scholar
  148. 148.
    Chin, K., Lukow, T., Stubner, S., and Conrad, R., FEMS Microbiol. Ecol., 1999, vol. 30, no. 4, pp. 313–326.PubMedGoogle Scholar
  149. 149.
    Wu, X.L. and Conrad, R., Environ. Microbiol., 2001, vol. 3, no. 6, pp. 355–362.PubMedCrossRefGoogle Scholar
  150. 150.
    Qu, X., Vavilin, V.A., Mazeas, L., Lemunier, M., Duquennoi, C., He, P., and Bouchez, T., Waste Manag., 2009, vol. 29, no. 6, pp. 1828–1837.PubMedCrossRefGoogle Scholar
  151. 151.
    Zinder, S.H. and Koch, M., Arch. Microbiol., 1984, vol. 138, no. 3, pp. 263–272.CrossRefGoogle Scholar
  152. 152.
    Ehrig, H.J., in Proc. Third Int. Waste Management and Landfill Symposium, Cagliari: CISA Publ., 1991, pp. 87–114.Google Scholar
  153. 153.
    Harries, C.R., Cross, C., and Smith, R., in Proc. Eighth Int. Waste Management and Landfill Symposium, Cagliari: CISA Publ., 2001, pp. 579–588.Google Scholar
  154. 154.
    Scheifinger, C.C. and Wolin, M.J., Appl. Environ. Microbiol., 1973, vol. 26, no. 5, pp. 789–795.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations