Applied Biochemistry and Microbiology

, Volume 48, Issue 3, pp 229–243 | Cite as

Antibacterial metabolites of lactic acid bacteria: Their diversity and properties

  • L. G. Stoyanova
  • E. A. Ustyugova
  • A. I. Netrusov


The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.


Lactobacillus Apply Biochemistry Lactis Lactic Acid Bacterium Lactic Acid Bacterium Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mechnikov, I.I., Molochnye mikroby i ikh pol’za dlya zdorov’ya (Dairy Microbes and Their Health Benefits), St. Petersburg: Izd. Zvorykin, 1911, p. 30.Google Scholar
  2. 2.
    Leroy, F., Verluyten, J., and De Vuyst, L., Int. J. Food Microbiol., 2006, vol. 106, pp. 270–285.PubMedCrossRefGoogle Scholar
  3. 3.
    Atanassova, M., Choiset, Y., Dalgalarrondo, M., Chobert, J., Dousset, X., Ivanova, I., and Haertle, T., Int. J. Food Microb., 2003, vol. 87, pp. 63–73.CrossRefGoogle Scholar
  4. 4.
    Albano, H., Todorov, S., van Reenen, C., Hogg, T., Dicks, L., and Teixeira, P., Int. J. Food Microbiol., 2007, vol. 116, pp. 239–247.PubMedCrossRefGoogle Scholar
  5. 5.
    Salminen, S., Lactic Acid Bacteria: Microbiology and Functional Aspects, 2nd ed., New York: Marcel Dekker, 1998.Google Scholar
  6. 6.
    Yang, Z., Suomalainen, T., Mäyrä-Mäkinen, A., and Huttunen, E., J. Food Prot., 1997, vol. 60, pp. 786–790.Google Scholar
  7. 7.
    Lowe, D. and Arendt, E., J. Inst. Brew., 2004, vol. 110, pp. 163–180.Google Scholar
  8. 8.
    Jay, M., Loessner, M., and Golden, D., Modern Food Microbiology, 7th ed., New York: Springer Science Business Media, 2005.Google Scholar
  9. 9.
    Sjögren, J., Magnusson, J., Broberg, A., Schnürer, A., and Kenne, L., Appl. Environ. Microbiol., 2003, vol. 69, pp. 7554–7557.PubMedCrossRefGoogle Scholar
  10. 10.
    Broberg, A., Jacobsson, K., Ström, K., and Schnürer, J., Appl. Environ. Microbiol., 2007, vol. 73, pp. 5547–5552.PubMedCrossRefGoogle Scholar
  11. 11.
    Magnusson, J., Ström, K., Roos, S., Sjögren, J., and Schnürer, J., FEMS Microbiol. Lett., 2003, vol. 219, pp. 129–135.PubMedCrossRefGoogle Scholar
  12. 12.
    Yang, E. and Chang, H., Int. J. Food Microbiol., 2010, vol. 139, pp. 56–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., and Gobetti, M., Appl. Environ. Microbiol., 2000, vol. 66, pp. 4084–4090.PubMedCrossRefGoogle Scholar
  14. 14.
    Ström, K., Sjögren, J., Broberg, A., and Schnürer, J., Appl. Environ. Microbiol., 2002, vol. 68, pp. 4322–4327.PubMedCrossRefGoogle Scholar
  15. 15.
    Lertcanawanichakul, M., Walailak J. Sci. Tech., 2005, vol. 2, pp. 179–187.Google Scholar
  16. 16.
    Roy, U., Batish, V., Grover, S., and Neelakantan, S., Int. J. Food Microbiol., 1996, vol. 32, pp. 27–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Coallier-Ascan, J. and Idziac, E., Appl. Environ. Microbiol., 1985, vol. 49, pp. 163–167.Google Scholar
  18. 18.
    Stoyanova, L.G., Ustyugova, E.A., Sultimova, T.D., Bilanenko, E.N., Fedorova, G.B., Khatrukha, G.S., and Netrusov, A.I., Am. J. Agricult. Biol. Sci., 2010, vol. 5, pp. 477–485.CrossRefGoogle Scholar
  19. 19.
    Stoyanova, L.G., Sul’timova, T.D., Botina, S.G., and Netrusov, A.I., Appl. Biochem. Microbiol., 2006, vol. 42, no. 5, pp. 491–499.CrossRefGoogle Scholar
  20. 20.
    Stoyanova, L.G., Fedorova, G.B., Egorov, N.S., Netrusov, A.I., and Katrukha, G.S., Appl. Biochem. Microbiol., 2007, vol. 43, no. 6, pp. 604–610.CrossRefGoogle Scholar
  21. 21.
    Rouse, S., Harnett, D., and Vaughan, A., D. Van Sinderen, J. Appl. Microbiol., 2008, vol. 104, pp. 915–923.PubMedCrossRefGoogle Scholar
  22. 22.
    Sathe, S., Nawani, N., Dhakephalker, P., and Kapadnis, B., J. Appl. Microbiol., 2007, vol. 103, pp. 2622–2628.PubMedCrossRefGoogle Scholar
  23. 23.
    Trias, R., Bañeras, L., Montesinos, E., and Badosa, E., Int. Microbiol., 2008, vol. 11, pp. 231–236.PubMedGoogle Scholar
  24. 24.
    Hurst, A., Adv. Appl. Microbiol., 1981, vol. 27, pp. 85–123.CrossRefGoogle Scholar
  25. 25.
    Yanagida, F., Chen, Y., and Shinohara, T., J. Gen. Appl. Microbiol., 2005, vol. 52, pp. 21–28.CrossRefGoogle Scholar
  26. 26.
    Beasley, S. and Saris, P., Appl. Environ. Microbiol., 2004, vol. 70, pp. 5051–5053.PubMedCrossRefGoogle Scholar
  27. 27.
    Gillor, O., Etzion, A., and Riley, M., Appl. Microbiol. Biotechnol., 2008, vol. 81, pp. 591–606.PubMedCrossRefGoogle Scholar
  28. 28.
    Mulders, J., Boerrigter, I., Rollema, H., Siezen, R., and de Vos, W., Eur. J. Biochem., 1991, vol. 201, pp. 581–584.PubMedCrossRefGoogle Scholar
  29. 29.
    Kogler, H., Bauch, M., Fehlhaber, M., Griesinger, C., Schubert, W., and Teetz, V., Nisin and Novel Lantibiotics. Jung, G. and Sahl, H.G., Eds., Leiden: ESCOM, 1991, pp. 113–122.Google Scholar
  30. 30.
    Schmitz, S., Hoffmann, A., Szekat, S., Rudd, B., and Bierbaum, G., Appl. Environ. Microbiol., 2006, vol. 72, pp. 7270–7277.PubMedCrossRefGoogle Scholar
  31. 31.
    Drider, D., Fimland, G., Héchard, Y., McMullen, M., and Prevost, H., Microbiol. Mol. Biol. Rev., 2006, vol. 70, pp. 564–582.PubMedCrossRefGoogle Scholar
  32. 32.
    Nissen-Meyer, J., Oppegard, C., Rogne, P., Haugen, H., and Kristiansen, P., Probiotics Antimicrob. Prot., 2010, vol. 2, pp. 52–60.CrossRefGoogle Scholar
  33. 33.
    Joerger, R., Poultry Sci., 2003, vol. 82, p. 640.Google Scholar
  34. 34.
    Franz, C., van Belcum, M., Holzapfel, W., Abriouel, H., and Galvez, A., FEMS Microbiol. Rev., 2007, vol. 31, pp. 293–310.PubMedCrossRefGoogle Scholar
  35. 35.
    Kwaadsteniet, M., Doeschate, K., and Dicks, L., Appl. Environ. Microbiol., 2008, vol. 74, pp. 547–549.PubMedCrossRefGoogle Scholar
  36. 36.
    Morgan, S., O’Connor, P., Cotter, P., Ross, R., and Hill, C., Appl. Environ. Microbiol., 2005, vol. 49, pp. 2606–2611.Google Scholar
  37. 37.
    Martínez, B., Böttiger, T., Schneider, T., Rodríguez, A., Sahl, H., and Wiedemann, I., Appl. Environ. Microbiol., 2009, vol. 74, pp. 4666–4670.CrossRefGoogle Scholar
  38. 38.
    Fujita, K., Ichimasa, S., Zendo, T., Koga, S., Yoneyama, F., Nakayama, J., and Sonomoto, K., Appl. Environ. Microbiol., 2007, vol. 73, pp. 2871–2877.PubMedCrossRefGoogle Scholar
  39. 39.
    Sawa, N., Zendo, T., Kiyofuji, J., Fujita, K., Himeno, K., Nakayama, J., and Sonomoto, K., Appl. Environ. Microbiol., 2009, vol. 75, pp. 1552–1558.PubMedCrossRefGoogle Scholar
  40. 40.
    Berdy, J., in BNPD, Data Base for Microbial Metabolite Research. Int. Conf. Microbial Secondary Metabolism., Interlaken, Suisse, 1994, Abstr. 2.Google Scholar
  41. 41.
    Stoyanova, L.G., Fedorova, G.B., Egorov, N.S., Katrukha, G.S., and Netrusov, A.I., RF Patent No. 2374320.Google Scholar
  42. 42.
    Willey, M. and van der Donk, W., Annu. Rev. Microbiol., 2007, vol. 61, pp. 477–501.PubMedCrossRefGoogle Scholar
  43. 43.
    Nes, I., Diep, D., Havarstein, L., and Holo, H., Anthonie van Leevwenhoek, 1996, vol. 70, pp. 113–128.CrossRefGoogle Scholar
  44. 44.
    Mota-Meira, M., Lapointe, G., Lacroix, C., and Lavoie, M., Antimicrob. Agents Chemother., 2000, vol. 44, pp. 24–29.PubMedCrossRefGoogle Scholar
  45. 45.
    Pol, I., van Arendonk, W., Mastwijk, H., Krommer, J., Smid, E.J., and Moezelaar, R., Appl. Environ. Microbiol., 2001, vol. 67, pp. 1693–1699.PubMedCrossRefGoogle Scholar
  46. 46.
    Gut, I., Prouty, A., Ballard, J., van der Donk, W., and Blanke, S., Antimicrob. Agents Chemother., 2008, vol. 52, pp. 4281–4288.PubMedCrossRefGoogle Scholar
  47. 47.
    Ross, R., Galvin, M., McAuliff, O., Morgan, S., Ryan, M., Twomey, D., Meaney, W., and Hill, C., Anthonie van Leevwenhoek, 1999, vol. 76, pp. 337–346.CrossRefGoogle Scholar
  48. 48.
    Holo, H., Jeknic, Z., Daeschel, M., Stevanovic, S., and Nes, I., Microbiology, 2001, vol. 147, pp. 643–651.PubMedGoogle Scholar
  49. 49.
    Barrett, E., Hayes, M., O’Connor, P., Gardiner, G., Fitzgerald, G., Stanton, C., Ross, P., and Hill, C., Appl. Environ. Microbiol., 2007, vol. 73, pp. 3719–3723.PubMedCrossRefGoogle Scholar
  50. 50.
    McAuliffe, O., Ross, R., and Hill, C., FEMS Microbiol. Rev., 2000, vol. 25, pp. 285–308.CrossRefGoogle Scholar
  51. 51.
    Jack, R., Tagg, J., and Ray, B., Microbiol. Mol. Biol. Rev., 1995, vol. 59, pp. 171–200.Google Scholar
  52. 52.
    Li, B., Paul, J., Donk, W., and Nair, S., Science, 2006, vol. 311, pp. 1464–1467.PubMedCrossRefGoogle Scholar
  53. 53.
    Kuipers, O., Beerthuyzen, M., de Ruyter, B., Luesink, E., and de Vos, M., J. Biol. Chem., 1995, vol. 270, pp. 27299–27304.PubMedCrossRefGoogle Scholar
  54. 54.
    Koponen, O., Tolonen, M., Qiao, M., Wahlstrom, G., Helin, J., and Saris, P., Microbiology, 2002, vol. 148, pp. 3561–3568.PubMedGoogle Scholar
  55. 55.
    Li, B. and van der Donk, W., J. Biol. Chem., 2007, vol. 282, pp. 21169–21175.PubMedCrossRefGoogle Scholar
  56. 56.
    Kotel’nikova, E.A. and Gel’fand, M.S., Russ. J. Genet., 2002, vol. 38, pp. 758–772.Google Scholar
  57. 57.
    Xie, L., Miller, Chatterjee C., Averin O., Kelleher N., Van Der Donk W, Science, 2004, vol. 303, pp. 679–681.PubMedCrossRefGoogle Scholar
  58. 58.
    Kleerebezem, M., Quadri, L., Kuipers, O., and de Vos, W., Mol. Microbiol., 1997, vol. 24, pp. 895–904.PubMedCrossRefGoogle Scholar
  59. 59.
    Turovskiy, E., Kashtanov, D., Paskhover, B., and Chikindas, M.L., Adv. Appl. Microbiol., 2007, vol. 62, pp. 191–234.PubMedCrossRefGoogle Scholar
  60. 60.
    Pascalle, G., Kuipers, O., and de Vos, M., Appl. Environ. Microbiol., 1996, vol. 62, pp. 3662–3667.Google Scholar
  61. 61.
    Nagao, J., Assaduzzaman, S., Asso, Y., Okuda, K., Nakayama, J., and Sonomoto, K., J. Biosci. Bioeng., 2006, vol. 102, pp. 139–149.PubMedCrossRefGoogle Scholar
  62. 62.
    Hester, E., Kramer, N., Smith, J., Hillman, D., Zachariah, C., and Kuipper, O., Science, 2006, vol. 313, pp. 1636–1637.CrossRefGoogle Scholar
  63. 63.
    Breukink, E., van Craaij, C., Demel, R., Siezen, R., Kuipers, O., and Kruijff, B., Biochemistry, 1997, vol. 36, pp. 6968–6976.PubMedCrossRefGoogle Scholar
  64. 64.
    Montville, T.J. and Chen, Y., Appl. Microbiol. Biotechnol., 1998, vol. 50, pp. 511–519.PubMedCrossRefGoogle Scholar
  65. 65.
    Breukink, E., Wiedemann, I., van Kraaij, C., Kuippers, O., and Sahe, H., Science, 1999, vol. 286, pp. 2361–2363.PubMedCrossRefGoogle Scholar
  66. 66.
    Wiedemann, I., Breukink, E., van Craaij, C., Kuipers, O., Bierbaum, G., de Kruijff, B., and Sahl, H., J. Biol. Chem., 2001, vol. 276, pp. 1772–1779.PubMedGoogle Scholar
  67. 67.
    Bonev, B., Breurinr, E., Swiezewska, E., de Kruijff, B., and Watts, A., FASEB J., 2004, pp. 1862–1869.Google Scholar
  68. 68.
    Hsu, S., Breukink, E., Tischenko, E., Lutters, M., De Kruijff, B., Kaptein, R., Bonvin, A., and Van Nuland, N., Nat. Struct. Mol. Biol., 2004, vol. 11, pp. 963–967.PubMedCrossRefGoogle Scholar
  69. 69.
    Hasper, H., Kruijff, B., and Breukink, E., Biochemistry, 2004, vol. 43, pp. 11567–11575.PubMedCrossRefGoogle Scholar
  70. 70.
    Wiedemann, I., Benz, R., and Sahl, H., J. Bacteriol., 2004, vol. 186, pp. 3259–3261.PubMedCrossRefGoogle Scholar
  71. 71.
    Bonelli, R., Schneider, T., Sahl, G., and Wiedemann, I., Antimicrob. Agents Chemother., 2006, vol. 50, pp. 1449–1457.PubMedCrossRefGoogle Scholar
  72. 72.
    Widemann, I., Böttiger, T., Bonelli, R., Schneide, T., Sahl, H., and Martinez, B., Appl. Environ. Microbiol., 2006, vol. 72, pp. 2809–2814.CrossRefGoogle Scholar
  73. 73.
    Fimland, G., Eijsink, Nissen-Meyer J, Microbiology, 2002, vol. 148, pp. 3661–3670.PubMedGoogle Scholar
  74. 74.
    Holck, A., Axelsson, L., Birkeland, SE., Aukrust, T., and Blom, H., J. Gen. Microbiol., 1992, vol. 138, pp. 2715–2720.PubMedGoogle Scholar
  75. 75.
    Holck, A., Axelsson, L., Huhne, K., and Kröckel, L., FEMS Microbiol. Lett., 1994, vol. 115, pp. 143–149.PubMedCrossRefGoogle Scholar
  76. 76.
    Holo, H., Nilsen, Q., and Nes, I.F., J. Bacteriol., 1991, vol. 173, pp. 3879–3887.PubMedGoogle Scholar
  77. 77.
    Martinez, B., Suarez, J.E., and Rodriguez, A., Microbiology, 1996, vol. 142, pp. 2393–2398.PubMedCrossRefGoogle Scholar
  78. 78.
    Rince, A., Le Pogam, S., Thuault, D., Bourgeois, C.M., and Le Pennec, J.P., Appl. Environ. Microbiol., 1994, vol. 60, pp. 1652–1657.PubMedGoogle Scholar
  79. 79.
    Worobo, R., Henkel, T., Sailer, M., Roy, K., Vederas, J., and Stiles, M., Microbiology, 1994, vol. 140, pp. 517–526.PubMedCrossRefGoogle Scholar
  80. 80.
    Quadri, L., Sailers, M., Ron, K.L., Vederass, J.C., and Stiles, M., J. Biol. Chem., 1994, vol. 269, pp. 12204–12211.PubMedGoogle Scholar
  81. 81.
    Tiehaczek, P.S., Vogel, R.F., and Hammes, W.P., Arch. Microbiol., 1993, vol. 160, pp. 279–283.CrossRefGoogle Scholar
  82. 82.
    Métivier, A., Pilet, M., Dousset, X., Sorokine, O., Anglade, P., Zagorec, M., Piard, J., Marion, D., Cenatiempo, Y., and Fremaux, E., Microbiology, 1998, vol. 144, pp. 2837–2844.PubMedCrossRefGoogle Scholar
  83. 83.
    Tahiri, I., Desbiens, M., Benech, R., Kheadr, E., Lacroix, C., Thibault, S., Ouellet, D., and Fliss, I., Int. J. Food Microbiol., 2004, vol. 97, pp. 123–136.PubMedCrossRefGoogle Scholar
  84. 84.
    Ferchichi, M., Frère, J., Mabrouk, K., and Manai, M., FEMS Microbiol. Letts., 2001, vol. 205, pp. 49–55.CrossRefGoogle Scholar
  85. 85.
    Hastings, J., Sailer, M., Johnson, K., Roy, K., Vederas, J., and Stiles, M., J. Bacteriol., 1991, vol. 173, pp. 7491–7500.PubMedGoogle Scholar
  86. 86.
    Hechard, Y., Berjeaud, J.M., and Cenatiempo, Y., Curr. Microbiol., 1999, vol. 39, pp. 265–269.PubMedCrossRefGoogle Scholar
  87. 87.
    Van Reenen, C., Dicks, L., and Chikindas, M., J. Appl. Microbiol., 1998, vol. 84, pp. 1131–1137.PubMedCrossRefGoogle Scholar
  88. 88.
    Henderson, J. and Chopko, A., Dick Van Wassenaar P, Arch. Biochem. Biophys., 1992, vol. 295, pp. 5–12.PubMedCrossRefGoogle Scholar
  89. 89.
    Motlagh, A., Bhunia, A., Szostek, F., Hansen, T.R., Johnson, M.C., and Ray, B., Lett. Appl. Microbiol., 1992, vol. 15, pp. 45–48.PubMedCrossRefGoogle Scholar
  90. 90.
    Simon, L., Fremaux, C., Cenatiempo, Y., and Berjeaud, J.M., Appl. Environ. Microbiol., 2002, vol. 68, pp. 6416–6420.PubMedCrossRefGoogle Scholar
  91. 91.
    Nissen-Meyer, J., Holo, H., Håvarstein, L.S., Sletten, K., and Nes, I.F., J. Bacteriol., 1992, vol. 174, pp. 5686–5692.PubMedGoogle Scholar
  92. 92.
    Zendo, T., Yoneyama, F., and Sonomoto, K., Appl. Microbiol. Biotech., 2010, vol. 88, pp. 1–9.CrossRefGoogle Scholar
  93. 93.
    Nissen-Meyer, J., Larsen, A.G., Sletten, K., Daeschel, M., and Nes, I.F., J. Gen. Microbiol., 1993, vol. 139, pp. 1973–1978.PubMedGoogle Scholar
  94. 94.
    Diep, D.B., Håvarstein, L.S., and Nes, I.F., J. Bacteriol., 1996, vol. 178, pp. 4472–4483.PubMedGoogle Scholar
  95. 95.
    Maldonado, A., Ruiz-Barba, J., and Jiménez-Díaz, R., Appl. Environ. Microbiol., 2003, vol. 69, pp. 383–389.PubMedCrossRefGoogle Scholar
  96. 96.
    Muriana, P.M. and Klaenhammer, T.R., Appl. Environ. Microbiol., 1991, vol. 57, pp. 114–121.PubMedGoogle Scholar
  97. 97.
    Palacios, J., Vignolo, G., Farias, M.E., de Ruis, Holgado A.R., Oliver, G., and Sesma, F., Microbiol. Res., 1999, vol. 154, pp. 199–204.PubMedCrossRefGoogle Scholar
  98. 98.
    Marciset, O., Jeronimus-Stratingh, M.C., Mollet, B., and Poolman, B., J. Biol. Chem., 1997, vol. 272, pp. 14277–14284.PubMedCrossRefGoogle Scholar
  99. 99.
    Blom, H., Katla, T., Holck, A., Sletten, K., Axelsson, L., and Holo, H., Curr. Microbiol., 1999, vol. 39, pp. 43–48.PubMedCrossRefGoogle Scholar
  100. 100.
    Zendo, T., Koga, S., Shigeri, Y., Nakayama, J., and Sonomoto, K., Appl. Environ. Microbiol., 2006, vol. 72, pp. 3383–3389.PubMedCrossRefGoogle Scholar
  101. 101.
    Papagianni, M. and Anastasiadou, S., Microb. Cell Fact., 2009, vol. 8, pp. 3–9.PubMedGoogle Scholar
  102. 102.
    Hühne, K., Axelsson, L., Holck, A., and Kröckel, A., Mikrobiologiya, 1996, vol. 142, pp. 1437–1448.Google Scholar
  103. 103.
    Oppegård, C., Rogne, P., Emanuelsen, L., Kristiansen, E., Fimland, G., and Nissen-Meyer, J., J. Mol. Microbiol. Biotechnol., 2007, vol. 13, pp. 210–219.PubMedCrossRefGoogle Scholar
  104. 104.
    Anderssen, E., Diep, D., Nes, I., Eijsink, V., and Nissen-Meyer, J., Appl. Environ. Microbiol., 1998, vol. 64, pp. 2269–2272.PubMedGoogle Scholar
  105. 105.
    Cuozzo, S., Castellano, P., Sesma, F., Vignolo, G., and Raya, R., Curr. Microbiol., 2003, vol. 46, pp. 180–183.PubMedCrossRefGoogle Scholar
  106. 106.
    Hauge, H., Mantzilas, D., Eijsink, V., and Nissen-Meyer, J., J. Bacteriol., 1998, vol. 181, pp. 740–747.Google Scholar
  107. 107.
    Diep, D., Skaugen, M., Salehian, Z., Holo, H., and Nes, I., Mikrobiologiya, 2007, vol. 104, pp. 2384–2389.Google Scholar
  108. 108.
    Dalet, K., Cenatiempo, Y., Cossart, P., and Hechard, Y., Microbiology, 2001, vol. 147, pp. 3263–3269.PubMedGoogle Scholar
  109. 109.
    Miller, K., Schamber, R., Osmanagaoglu, O., and Ray, B., Appl. Environ. Microbiol., 1998, vol. 64, pp. 1997–2005.PubMedGoogle Scholar
  110. 110.
    Yoneyama, F., Imura, Y., Ichimasa, S., Fujita, K., Zendo, T., Nakayama, S., Matsuzaki, K., and Sonomoto, K., Appl. Environ. Microbiol., 2009, vol. 75, pp. 538–541.PubMedCrossRefGoogle Scholar
  111. 111.
    Garneau, S., Martin, N., and Vederas, J., Biochimie, 2002, vol. 84, pp. 577–592.PubMedCrossRefGoogle Scholar
  112. 112.
    Héchard, Y. and Sahl, H., Biochimie, 2002, vol. 84, pp. 545–557.PubMedCrossRefGoogle Scholar
  113. 113.
    Moll, G., Akker, E., Hauge, H., Nissen-Meyer, J., Nes, I., Konings, W., and Driessen, A., J. Bacteriol., 1999, vol. 181, pp. 4848–4852.PubMedGoogle Scholar
  114. 114.
    Hugas, M., Pages, F., Garriga, M., and Monfor, J., Food Microbiol., 1998, vol. 15, pp. 639–650.CrossRefGoogle Scholar
  115. 115.
    Chikindas, M., Garcia-Garcera, M., Driessen, A., Ledeboer, A., Nissen-Meyer, J., Nes, I., Abee, T., Konings, W., and Venema, G., Appl. Environ. Microbiol., 1999, vol. 59, pp. 3577–3584.Google Scholar
  116. 116.
    Biswas, S., Ray, P., Johnson, M., and Ray, B., Appl. Environ. Microbiol., 1991, vol. 57, pp. 1265–1267.PubMedGoogle Scholar
  117. 117.
    Cleveland, J., Montville, T., Nes, I., and Chikindas, M., Int. J. Food Microbiol., 2001, vol. 50, pp. 131–149.Google Scholar
  118. 118.
    Millette, M., Cornut, G., Dupont, C., Shareck, F., Archambault, D., and Lacroix, M., Appl. Environ. Microbiol., 2008, vol. 74, pp. 1997–2003.PubMedCrossRefGoogle Scholar
  119. 119.
    Lauková, A. and Czikková, S., J. Appl. Microbiol., 1999, vol. 87, pp. 182–186.PubMedCrossRefGoogle Scholar
  120. 120.
    De Vuyst, L. and Leroy, F., J. Mol. Microbiol. Biotechnol., 2007, vol. 13, pp. 194–199.PubMedCrossRefGoogle Scholar
  121. 121.
    Cotter, P., Hill, C., and Ross, R., Curr. Protein Pept. Sci., 2005, vol. 6, pp. 61–75.PubMedCrossRefGoogle Scholar
  122. 122.
    Galvez, A., Lopez, R., Abriouel, H., Valdivia, E., and Omar, N., Crit. Rev. Biotechnol., 2008, vol. 28, pp. 125–52.PubMedCrossRefGoogle Scholar
  123. 123.
    Ming, X., Weber, G., Ayres, J., and Sandine, W., J. Food Sci., 1997, vol. 62, pp. 413–415.CrossRefGoogle Scholar
  124. 124.
    Natrajan, N. and Sheldon, B., J. Food Prot., 2000, vol. 63, pp. 1189–1196.PubMedGoogle Scholar
  125. 125.
    Brumfitt, W., Salton, M., and Hamilton-Miller, J., J. Antimicrob. Agents Chem., 2002, vol. 50, pp. 731–734.CrossRefGoogle Scholar
  126. 126.
    Stoyanova, L.G. and Egorov, N.S., Mikrobiologiya, 1998, vol. 67, no. 1, pp. 38–44.Google Scholar
  127. 127.
    Stoyanova, L.G. and Egorov, N.S., Mikrobiologiya, 1999, vol. 68, no. 2, pp. 197–202.Google Scholar
  128. 128.
    Wu, J., Hu, S., and Cao, L., Antimicrob. Agents Chemother., 2007, vol. 51, pp. 3131–3135.PubMedCrossRefGoogle Scholar
  129. 129.
    Lay, C., Akerey, B., Fliss, I., Sibirade, M., and Rouabhia, M., J. Appl. Microbiol., 2008, vol. 105, pp. 1630–1639.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • L. G. Stoyanova
    • 1
  • E. A. Ustyugova
    • 1
  • A. I. Netrusov
    • 1
  1. 1.Biology DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations