Applied Biochemistry and Microbiology

, Volume 48, Issue 3, pp 312–317 | Cite as

Effect of particle size on the enzymatic hydrolysis of polysaccharides from ultrafine lignocellulose particles

  • V. V. Shutova
  • A. I. Yusipovich
  • E. Yu. Parshina
  • D. O. Zakharkin
  • V. V. Revin


The efficiency of the enzymatic hydrolysis of wood polysaccharides ground into ultrafine particles (UFPs) has been investigated. The content of reducing sugars (RS’s) in powdered raw materials and the yield of sugars during enzymatic hydrolysis have been shown to depend on the particle size. Laser interference microscopy and dynamic light scattering studies have shown that increasing the grinding time from 20 to 40 min resulted in the formation of particles ranging from 2 to 200 nm in size. Enzymatic hydrolyzates of UFPs mostly contained glucose and galactose. The grinding intensity (mill rotation rate) and time had a significant effect on the extent of the enzymatic hydrolysis of wood.


Enzymatic Hydrolysis Apply Biochemistry Sawdust Ultrafine Particle Wood Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sedlacek, D., Renew. Fuel Assoc., 2002, no. 2, pp. 19–28.Google Scholar
  2. 2.
    Karpov, S.A., Khim. Tekhnol. Topl. Masel, 2008, no. 1, pp. 3–5.Google Scholar
  3. 3.
    Badger, P.C., Trends New Crops New Uses, 2002, no. 11, pp. 17–21.Google Scholar
  4. 4.
    Khvalin, I.V., Stroit. Dorozh. Mash., 2006, no. 11, pp. 18–19.Google Scholar
  5. 5.
    Zhu, J.Y., Zhu, W., Obryan, P., Dien, B.S., Tian, S., Gleisner, R., and Pan, X.J., Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 5, pp. 1355–1365.PubMedCrossRefGoogle Scholar
  6. 6.
    Farinas, J. and Verkman, A.S., Biophys. J., 1996, vol. 71, pp. 3511–3522.PubMedCrossRefGoogle Scholar
  7. 7.
    Vishnyakov, G.N., Zakaryan, K.S., Levin, G.G., and Streletskaya, E.A., Measurement Techniques, 1999, vol. 42, no. 1, pp. 66–70.CrossRefGoogle Scholar
  8. 8.
    Tychinsky, V., Kretushev, A., and Vyshenskaja, T., Eur. Biophys. J., 2004, vol. 33, pp. 700–705.PubMedCrossRefGoogle Scholar
  9. 9.
    Yusipovich, A.I., Parshina, E.Y., Brysgalova, N.Y., Brazhe, A.R., Brazhe, N.A., Lomakin, A.G., Levin, G.G., and Maksimov, G.V., J. Appl. Phys., 2009, vol. 105, p. 102037.CrossRefGoogle Scholar
  10. 10.
    Rappaz, B., Barbul, A., Hoffmann, A., Boss, D., Korenstein, R., Depeursinge, C., Magistretti, P.J., and Marquet, P., Blood Cells Mol. D, 2009, vol. 42, pp. 228–232.CrossRefGoogle Scholar
  11. 11.
    Yusipovich, A.I., Novikov, S.M., Kazakova, T.A., Erokhova, L.A., Brazhe, N.A., Lazarev, G.L., and Maksimov, G.V., Kvant. Elektron., 2006, vol. 36, pp. 874–878.CrossRefGoogle Scholar
  12. 12.
    Kasarova, S.N., Sultanova, N.G., Ivanov, C.D., and Nikolov, I.D., Opt. Mater., 2007, vol. 29, pp. 1481–1490.CrossRefGoogle Scholar
  13. 13.
    Kadimaliev, D.A., Revin, V.V., Shutova, V.V., and Samuilov, V.D., Prikl. Biokhim. Mikrobiol., 2004, vol. 40, no. 1, pp. 49–52.Google Scholar
  14. 14.
    Lough, W.J. and Wainer, I.W., High Performance Liquid Chromatography: Fundamental Principles and Practice, London: Blackie Acad. Prof., 2004.Google Scholar
  15. 15.
    Lau, M.J., Lau, M.W., Gunawan, C., and Dale, B.E., Appl. Biochem. Biotechnol., 2010, vol. 162, no. 7, pp. 1847–1857.PubMedCrossRefGoogle Scholar
  16. 16.
    Rabinovich, M.L. and Mel’nik, M.S., Usp. Biol. Khim., 2000, vol. 40, pp. 205–266.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • V. V. Shutova
    • 1
  • A. I. Yusipovich
    • 2
  • E. Yu. Parshina
    • 2
  • D. O. Zakharkin
    • 1
  • V. V. Revin
    • 1
  1. 1.Ogarev State UniversityMordovia, SaranskRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations