Applied Biochemistry and Microbiology

, Volume 47, Issue 9, pp 789–807 | Cite as

Microalgae as source of biofuel, food, fodder, and medicines

  • S. D. Varfolomeev
  • L. A. Wasserman


Current status and future prospects of such problem as the production of microalgae and their application for biofuel generation (biodiesel, biohydrogen, bioethanol), as well as other products, is discussed in the review. The use of microalgae in human food, fodder, cosmetics, dyes, polysaccharides, antioxidants, medicines, and other products is quite promising. Presently, microalgae are noncompetitive with plant materials, due to economic reasons, in serving as a source of biofuel. Thereby, it is urgently necessary in modern biotechnology to improve the methods for the production of microalgae and search for new ways of their processing.


Biomass Microalgae Apply Biochemistry Biomethane Chlorella 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Richmond, A., Handbook of Microalgae Culture: Biotechnology and Phycology, Oxford: UK: Blackwell Science, 2004.Google Scholar
  2. 2.
    Varfolomeev, S.D., Efremenko, E.N., and Krylova, L.P., Usp. Khim., 2010, vol. 79, no. 6, pp. 544–564.Google Scholar
  3. 3.
    Pulz, O. and Gross, W., Appl. Microbiol. Biotechnol., 2004, vol. 65, pp. 635–648.PubMedCrossRefGoogle Scholar
  4. 4.
    Borowitzka, M.A., J. Biotechnol., 1999, vol. 70, pp. 313–321.CrossRefGoogle Scholar
  5. 5.
    Metting, B., and Pyne, J.W., J. Ind. Microbiol., 1996, vol. 17, pp. 477–489.CrossRefGoogle Scholar
  6. 6.
    Spolaore, P., Joassis-Cassan, C., Duran, E., and Isambert, A., J. Biosci. Bioeng., 2006, vol. 101, no. 2, pp. 87–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Banerjee, A., Sharma, R., Chisti, Y., and Banerjee, U.C., Crit. Rev. Biotechnol., 2002, vol. 22, pp. 245–279.PubMedCrossRefGoogle Scholar
  8. 8.
    Pulz, O. and Scheibenboden, K., Adv. Biochem. Eng. Biotechnol., 1998, vol. 59, pp. 123–151.CrossRefGoogle Scholar
  9. 9.
    Moiseev, I.I., Varfolomeev, S.D., and Myasoedov, B.F., Vesti Ros. Akad. Nauk, 2009, vol. 79, no. 7, pp. 595–603.Google Scholar
  10. 10.
    Chisti, Y., Biotechnol. Adv., 2007, vol. 25, pp. 294–306.PubMedCrossRefGoogle Scholar
  11. 11.
    Mata, T.M., Martins, A.A., and Caetano, N.S., Renew. Sustain. Energy Rev., 2010, vol. 14, pp. 217–232.CrossRefGoogle Scholar
  12. 12.
    Huang, G.H., Chan, F., Wei, D., Zhang, X.W., Chen, G., Appl. Energy, 2010, vol. 87, pp. 38–46.CrossRefGoogle Scholar
  13. 13.
    Kapdan, I.K. and F. Kargi, Enzyme Microb. Technol., 2006, vol. 78, pp. 151–177.Google Scholar
  14. 14.
    Varfolomeev, S.D., Konversiya energii biokataliticheskimi sistemami (Energy Conversion by biocatalytic systems), Moscow: Mosk. Gos. Univ., 1981.Google Scholar
  15. 15.
    Kondrat'eva, E.N. and Gogov, I.N., Molekulyarnyi vodorod v metabolizme mikroorganizmov (Molecular Hydrogen in the Metabolism of Microorganisms), Moscow: Nauka, 1981.Google Scholar
  16. 16.
    Matsunaga, T., akeyama, H.T, Miyashita, H., and Yokouchi, H., in Advances in Biochemical Engineering/Biotechnology, Berlin: Springer, 2005, pp. 165–188.Google Scholar
  17. 17.
    Renaud, S.M., Thinh, L.V., and Parry, D.L., Aquaculture, 1999, vol. 170, pp. 147–159.CrossRefGoogle Scholar
  18. 18.
    Sergeenko, T.V., Muradyan, E.A., Pronina, N.A., Klyachko-Gurvich, G.L., Mishina, I.M., and Tsoglin, L.N., Fiziol. Rast., 2000, vol. 47, no. 5, pp. 722–729.Google Scholar
  19. 19.
    Vonshak, A., Biotech. Adv., 1990, vol. 8, pp. 709–727.CrossRefGoogle Scholar
  20. 20.
    Miro'n, A.S., Garcia, M.C.C., Go'Mez, A.C., Camacho, F.G., Grima, E.M., and Chisti, Y., Biochem. Eng. J., 2003, vol. 16, pp. 287–297.CrossRefGoogle Scholar
  21. 21.
    Chisti, Y., Trend Biotechnol, 2008, vol. 26, pp. 126–131.CrossRefGoogle Scholar
  22. 22.
    Metzger, P. and Ñ. Largeau, Appl. Microbiol. Biotechnol., 2005, vol. 66, pp. 486–496.PubMedCrossRefGoogle Scholar
  23. 23.
    Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., and Bonini, G., Biotechnol. Bioeng., 2009, vol. 102, no. 1, pp. 100–112.PubMedCrossRefGoogle Scholar
  24. 24.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M., Renew. Energy, 2009, vol. 34, pp. 1–9.CrossRefGoogle Scholar
  25. 25.
    Salis, A., in Handbook of Hydrocarbon and Lipid Microbiology, Timmis, K.N., Ed., Berlin: Springler-Verlag, 2010, pp. 2827–2839.CrossRefGoogle Scholar
  26. 26.
    Chernova, N.I., Kiseleva, S.I., Korobkova, T.P., and Zaitseva, S.I., Al'ternat. Energet. Ekol., 2008, vol. 9, no. 65, pp. 68–74.Google Scholar
  27. 27.
    Tsoglin, L.N. and Gabel', B.V., Russ. J. Plant Physiol., 2000, vol. 47. Ã. 5. Ñ. 761–767.CrossRefGoogle Scholar
  28. 28.
    Tsoglin, L.N., Gabel', B.V., Fal'kovich, T.N., and Semenenko, V.E., Russ. J. Plant Physiol., 1996, vol. 43, no. 1, pp. 149–155.Google Scholar
  29. 29.
    Molina Grima, E., Belarbi, E.-H., Acien Fernandez, F.G., Robles Medina, A., and Chisti, Y., Biotechnol. Adv., 2003, vol. 20, pp. 491–515.PubMedCrossRefGoogle Scholar
  30. 30.
    Huntley, T. and Redalje, D., Mitig. Adapt. Strat. Glob. Change, 2007, vol. 12, no. 4, pp. 573–608.CrossRefGoogle Scholar
  31. 31.
    Peng, W.M. and Wu, X.Y., J. Appl. Phycol., 2000, vol. 12, pp. 147–152.CrossRefGoogle Scholar
  32. 32.
    Miao, X.L., and Wu, X.Y., J. Biotechnol., 2004, vol. 110, pp. 85–93.PubMedCrossRefGoogle Scholar
  33. 33.
    Miao, X.L. and Wu, X.Y., J. Anal. Appl. Pyrol., 2004, vol. 71, pp. 855–863.CrossRefGoogle Scholar
  34. 34.
    Milne, T.A., Evans, R.J., and Nagle, N., Biomass, 1990, vol. 21, pp. 219–232.CrossRefGoogle Scholar
  35. 35.
    Brigwater, A.V., Meier, D., and Radlein, D., Org. Geochem., 1999, vol. 30, pp. 1479–1493.CrossRefGoogle Scholar
  36. 36.
    Antonakou, E., Lappas, A., Nilsen, M.H., Bouzga, A., and Stoecker, M., Fuel, 2006, vol. 85, pp. 2202–2212.CrossRefGoogle Scholar
  37. 37.
    Maggi, R. and Delmon, B., Fuel, 1994, vol. 73, pp. 671–676.CrossRefGoogle Scholar
  38. 38.
    Tran, N.H., Barlett, J.R., Kannangara, G.S.K., Milev, A.S., Volk, H., and Wilson, M.A., Fuel, 2010, vol. 89, pp. 265–274.CrossRefGoogle Scholar
  39. 39.
    Minowa, T., Yokoya, S.Y., Kishimoto, M., and Okakura, T., Fuel, 1995, vol. 74, no. 12, pp. 1735–1738.CrossRefGoogle Scholar
  40. 40.
    Dote, Y., Sawayama, S., Inoue, S., Minowa, T., and Yokoyama, Sh., Fuel, 1994, vol. 73, no. 12, pp. 1855–1857.CrossRefGoogle Scholar
  41. 41.
    Sawayama, S., Minowa, T., and Yokoyama, S.Y., Biomass Bioeng., 1999, vol. 17, pp. 33–39.CrossRefGoogle Scholar
  42. 42.
    Hirano, A., Hon-Nami, K., Kunito, S., Hada, M., and Ogushi, Y., Catalyst Today, 1998, vol. 45, pp. 399–404.CrossRefGoogle Scholar
  43. 43.
    Minowa, T. and Sawayama, S., Fuels, 1999, vol. 78, no. 10, pp. 55–63.CrossRefGoogle Scholar
  44. 44.
    Bozbas, K., Renew. Sust. Energy Rev., 2008, vol. 12, pp. 542–552.CrossRefGoogle Scholar
  45. 45.
    Warabi, Y., Kusdiana, D., and Saka, S., Biores. Technol., 2004, vol. 91, pp. 283–287.CrossRefGoogle Scholar
  46. 46.
    Fukuda, H., Kondo, A., and Noda, H., J. Biosci. Bioeng., 2001, vol. 92, pp. 405–416.PubMedCrossRefGoogle Scholar
  47. 47.
    Naik, M., Meher, L.C., Naik, S.N., and Das, L.M., Biomass. Bioenerg., 2008, vol. 32, pp. 354–357.CrossRefGoogle Scholar
  48. 48.
    Cravotto, G., Boffa, L., Mantegna, S., Peredo, P., Avogadro, M., and Cintas, P., Ultrasonic Sonochem., 2008, vol. 15, pp. 898–902.CrossRefGoogle Scholar
  49. 49.
    Gogate, P.R. and Kadabi, A.M., Biochem. Eng. J., 2009, vol. 44, pp. 60–72.CrossRefGoogle Scholar
  50. 50.
    Klava, A., Savasankar, T., and Moholkar, V.S., Indust. Eng. Chem. Res., 2008, vol. 48, pp. 534–544.CrossRefGoogle Scholar
  51. 51.
    Pletnev, M.Yu., Biotekhnologiya, 2009, no. 1, pp. 3–10.Google Scholar
  52. 52.
    Varfolomeev, S.D., Vol'eva, V.B., Usachev, S.V., Belostotskaya, I.S., Komissarova, N.L., Malkova, A.V., Nekhaev, A.I., Maksimova, A.L., and Makarov, G.G., Kataliz Promyshl., 2010, vol. 5, pp. 39–44.Google Scholar
  53. 53.
    Varfolomeev, S.D., Nikiforov, G.A., Vol'eva, V.B., Makarov, G.G., and Trusov, L.I., RF Patent No. 2365617 (2008).Google Scholar
  54. 54.
    Salis, A., in Industrial Enzymes, Polana, J. and MacCabe, A.P., Eds., Dordrecht: Springer, 2007, pp. 317–339.CrossRefGoogle Scholar
  55. 55.
    Salis, A., Bhattacharyya, M.S., Monduzzi, M., and Solinas, V., J. Mol. Cat B: Enzyme, 2009, vol. 57, pp. 262–269.CrossRefGoogle Scholar
  56. 56.
    Shah, S. and Gupta, M.N., Pichia stipitis, Proc. Biochem., 2007, vol. 42, pp. 409–414.CrossRefGoogle Scholar
  57. 57.
    Knotke, G., J. Am. Oil Chem. Soc., 2006, vol. 83, pp. 823–833.CrossRefGoogle Scholar
  58. 58.
    Dijhtra, A.J., Eur. J. Lipid Sci. Technol., 2006, vol. 108, pp. 249–264.CrossRefGoogle Scholar
  59. 59.
    Amin, S., Energy Conver. Manag., 2009, vol. 50, pp. 1834–1840.CrossRefGoogle Scholar
  60. 60.
    Bourne, J.K., Biofuels: Green Dreams, Natl. Geogr. Mag, 2007, October, pp. 41–59.Google Scholar
  61. 61.
    Gray, K.A., Curr. Opin. Chem. Biol., 2006, vol. 10, pp. 141–146.PubMedCrossRefGoogle Scholar
  62. 62.
    Gaffron, H. and Rubin, J., J. Gen. Physiol., 1942, vol. 26, pp. 219–240.PubMedCrossRefGoogle Scholar
  63. 63.
    Melis, A., Zhang, L., Forestier, M., Ghirardi, M.L., and Seibert, M., Plant Physiol., 2000, vol. 122, pp. 127–136.PubMedCrossRefGoogle Scholar
  64. 64.
    Forestier, M., King, P., and Zhang, L.P., Europ. J. Biochem., 2003, vol. 270, pp. 2750–2758.PubMedCrossRefGoogle Scholar
  65. 65.
    Kruse, O., Rupprecht, J., Bader, K.-P., Thomas-Hall, S., Schenk, P.M., Finazzi, G., and Hankamer, B., J. Biol. Chem., 2005, vol. 280, pp. 34170–34177.PubMedCrossRefGoogle Scholar
  66. 66.
    Varfolomeev, S.D., Kalyuzhnyi, S.V., and Medman, D.Ya., Usp. Khim., 1988, vol. 5, pp. 1201–1241.Google Scholar
  67. 67.
    Kalyuzhnyi, S.V., Biotekhnologiya, 2008, no. 3, pp. 3–12.Google Scholar
  68. 68.
    Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Poster, S., Kruse, O., and Hankamer, B., Bioenerg. Res., 2008, vol. 1. no. 1, pp. 20–43.CrossRefGoogle Scholar
  69. 69.
    Weiland, P., Appl. Biochem. Biotechnol., 2003, vol. 109, pp. 263–274.PubMedCrossRefGoogle Scholar
  70. 70.
    Ueno, Y., Kurano, N., and Miyachi, S.J., Ferment. Bioeng., 1998, vol. 86, pp. 38–43.CrossRefGoogle Scholar
  71. 71.
    Harun, R., Danquah, M.D., and Forde, G.M., J. Chem. Technol. Biotechnol., 2010, vol. 85, pp. 199–203.Google Scholar
  72. 72.
  73. 73.
    Wijffels, R.H., Trend. Biotechnol., 2008, vol. 1. 1 26, pp. 26–30.CrossRefGoogle Scholar
  74. 74.
    Dufosse, L., Calaup, P., Yaron, A., Blanck, P., Murthy, K.N.C., and Ravishankar, G.A., Trends Food Sci. Technol., 2005, vol. 16, pp. 389–406.CrossRefGoogle Scholar
  75. 75.
    Rebolloso Fuentes, M.M., Navaro Perez, A., Garcia Camacho, F., Ramos Miras, J.J., and Guil Guerrero, J.L., J. Agric. Food. Chem., 2001, vol. 49, pp. 2966–2972.PubMedCrossRefGoogle Scholar
  76. 76.
    Soletto, D., Binaghi, L., Lodi, A., Carvalho, J.C.M., and Converti, A., Aquaculture, 2005, vol. 242, pp. 217–224.CrossRefGoogle Scholar
  77. 77.
    Yamaguchi, K., J. Appl. Phycol., 1997, vol. 8, pp. 487–502.CrossRefGoogle Scholar
  78. 78.
    Liang, S., Xueming, L., Chen, F., and Chen, Z., Hydrobiologia, 2004, vol. 512, pp. 45–48.CrossRefGoogle Scholar
  79. 79.
    Jong-Yuh, S. and Mei-Fen, S., Life Sci., 2005, vol. 77, pp. 980–990.PubMedCrossRefGoogle Scholar
  80. 80.
    Yeum, K.J. and Russel, R.M., Ann. Rev. Nutrition, 2002, vol. 22, pp. 483–504.CrossRefGoogle Scholar
  81. 81.
    Roodenburg, A.J., Leenen, R., Van het Hof, K.H., Weststrate, J.A., and Tijburg, L.B., Amer. J. Clinic. Nutrition, 2000, vol. 71, pp. 1187–1193.Google Scholar
  82. 82.
    Finney, K.F., Pomeranz, Y., and Bruinsma, B., Cereal Chem., 1994, vol. 61, pp. 401–406.Google Scholar
  83. 83.
    Villar, R., Laguna, M.R., Calleja, J.M., and Cadavid, I., Planta Medica, 1992, vol. 58, pp. 405–409.PubMedCrossRefGoogle Scholar
  84. 84.
    Tornwall, M.E., Virtamo, J., Korhonen, P.A., Virtranen, M.J., Taylor, P.R., Al-banes, D., and Huttunen, J.K., Eur. Heart J., 2004, vol. 1, pp. 209–227.Google Scholar
  85. 85.
    Benedetti, S., Benvenuti, F., Pagliarani, S., Francogli, S., Sconglio, S., and Canestrari, F., Life Sci., 2004, vol. 75, pp. 2353–2362.PubMedCrossRefGoogle Scholar
  86. 86.
    Muller-Feuga, A., J. Appl. Phycol., 2000, vol. 12, pp. 527–534.CrossRefGoogle Scholar
  87. 87.
    Del Campo, J.A., Moreno, J., Rodriquez, H., Vargas, M.A., Rivas, J., and Guerrero, M.G., J. Biotechnol., 2000, vol. 76, pp. 51–59.PubMedCrossRefGoogle Scholar
  88. 88.
    Apt, K.E. and Behrens, P.W., J. Phycol., 1999, vol. 35, pp. 215–226.CrossRefGoogle Scholar
  89. 89.
    Radmer, R.J., Bioscience, 1996, vol. 46, pp. 263–270.CrossRefGoogle Scholar
  90. 90.
    Certik, M. and Shimizu, S., J. Biosci. Bioeng., 1999, vol. 87, pp. 1–14.PubMedCrossRefGoogle Scholar
  91. 91.
    Ward, O.P. and Singh, A., Proc. Biochem., 2005, vol. 40, pp. 3627–3652.CrossRefGoogle Scholar
  92. 92.
    Manners, D.J. and Wright, A., J. Chem. Soc., 1962, pp. 4592–4595.Google Scholar
  93. 93.
    Manners, D.J. and Sturgeon, R.J., in Encyclopedia of Plant Physiology, Loewus, F.A. and Tanner, W., Eds., Berlin: Spriger-Verlag, 1982, pp. 472–514.Google Scholar
  94. 94.
    Nakamura, Y., Takahashi, J., Sakurai, A., Inaba, Y., Suzuki, E., Nihei, S., Fujiwara, S., Tsuzuki, M., Miyashita, H., Ikemoto, H., Kawachi, M., Sekiguchi, H., and Kurano, N., Plant Cell Physiol., 2005, vol. 46, pp. 539–545.PubMedCrossRefGoogle Scholar
  95. 95.
    Ioannou, E. and Roussis, V., in Plant-Derived Natural Products, Osbourn, A.E. and Lazotti, V., Eds., Berlin: Springer, 2009, pp. 51–81.CrossRefGoogle Scholar
  96. 96.
    Namikoshi, M., J. Int. Microbiol. Biotechnol., 1996, vol. 17, pp. 373–384.CrossRefGoogle Scholar
  97. 97.
    Arad, S.M. and Levy-Ontman, O., Curr. Opin. Biotechnol., 2010, vol. 21, pp. 358–364.PubMedCrossRefGoogle Scholar
  98. 98.
    Geresh, S., Mamontov, A., and Weinstein, J., J. Biochem. Biophys. Meth., 2002, vol. 50, nos. 2–3, pp. 179–187.PubMedCrossRefGoogle Scholar
  99. 99.
    Matsui, M.S., Muizzuddin, N., Arad, S., and Marenus, K., Appl. Biochem. Biotechnol., 2003, vol. 104, pp. 13–22.PubMedCrossRefGoogle Scholar
  100. 100.
    Shimonada, T., Fujiwara, S., Kaneko, M., Izumo, A., Nihei, S., Francisco, P.B., Jr., Satoh, A., Fujita, N., Nakamura, Y., and Tsuzuki, M., Marine Biotechnol., 2007, vol. 9, pp. 192–202.CrossRefGoogle Scholar
  101. 101.
    Stadnichuk, I.N., Semenova, L.R., Smirnova, G.P., and Usov, A.I., Appl. Biochem. Microbiol., 2007, vol. 1, pp. 88–93.Google Scholar
  102. 102.
    Bermidez, J., Rosales, N., Loreto, S., Briceno, B., and Morales, E., World J. Microbiol. Biotechnol., 2004, vol. 20, pp. 179–183.CrossRefGoogle Scholar
  103. 103.
    Suarez, E.R., Bugdeb, S.M., Kai, F.B., Kralovec, J.A., Noseda, M.D., Barrow, C.J., and Grindley, T.B., Carbohydrate Res., 2008, vol. 343, pp. 2623–2633.CrossRefGoogle Scholar
  104. 104.
    Biedrzycka, E., Pol. J. Food Nutr. Sci., 2004, vol. 13/54, pp. 143–150.Google Scholar
  105. 105.
    Dehenne, N.M. and Roberfroid, M.R., Lebensm.-Wiss. Technol., 1994, vol. 27, pp. 1–7.CrossRefGoogle Scholar
  106. 106.
    Jenkins, D.J.A., Jenkins, A.L., Wolever, T.M.S., Collier, G.R., Rao, A.V., and Thompson, L.U., Scand. J. Gastroenterol., 1987, vol. 22. S. 129, pp. 132–141.CrossRefGoogle Scholar
  107. 107.
    Roediger, W.E.W., Gastroenterology, 1982, vol. 83, pp. 424–429.PubMedGoogle Scholar
  108. 108.
    Martin, L.I.M., Duman, H.J.W., and Champ, M.M.J., J. Sci. Food Agric., 1998, vol. 77, pp. 71–88.CrossRefGoogle Scholar
  109. 109.
    Sheng, J., Yu, F., Xin, Zh., Zhao, Zh., Zhu, X., and Hu, Q., Food Chem., 2007, vol. 105, pp. 533–539.CrossRefGoogle Scholar
  110. 110.
    Maksimova, I.V., Bratkovskaya, L.B., and Plekhanov, S.E., Biol. Bull., 2004, vol. 31, pp. 175–181.CrossRefGoogle Scholar
  111. 111.
    Volk, R.-B., Venzke, K., and Blaschek, W., J. Appl. Phycol., 2007, vol. 19, pp. 255–262.CrossRefGoogle Scholar
  112. 112.
    De Phillips, R., Ena, A., Paperi, R., Sili, S., and Vincenzini, M., J. Appl. Phycol., 2000, vol. 12, pp. 401–407.CrossRefGoogle Scholar
  113. 113.
    Rodjaroen, S., Juntawong, N., Mahakhant, A., and Miyamoto, K., Kasetsart J. (Nat Sci), 2007, vol. 41, pp. 570–575.Google Scholar
  114. 114.
    Dragon, C.M., Fernandes, B.D., Abreu, A.P., Vicente, A.A., and Teixeira, J.A., in Book of Abstracts of MicroBiol09, November 28–30, 2009, Vilamoura: Algavre, 2009, p. 157.Google Scholar
  115. 115.
    Izumo, A., Fujiwara, S., Oyama, Y., Satoh, A., Fujita, N., Nakamura, Y., and Tsuzuki, M., Plant Sci., 2007, vol. 172, pp. 1138–1147.CrossRefGoogle Scholar
  116. 116.
    Willats, W.G.T. and Sorensen, I., J. Biotechnol., 2008, vol. 136, pp. SI99.CrossRefGoogle Scholar
  117. 117.
    Matsukawa, R., Dubisky, Z., Masaki, K., Takeuchi, T., and Karube, I., Appl. Biochem. Biotechnol., 1997, vol. 66, pp. 239–247.CrossRefGoogle Scholar
  118. 118.
    Tramper, J., Battershill, S., Brandenburg, W., Burgess, G., Hill, R., Luiten, E., Miiller, W., Osinga, R., Rorrer, G., Tredici, M., Uriz, M., Wright, P., and Wijffels, R., Biomol. Eng., 2003, vol. 20. P. 467-471.Google Scholar
  119. 119.
    Olaizola, M., Biomol. Eng., 2003, vol. 20, pp. 459–466.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Emmanuel Institute for Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations