Advertisement

Histone-like proteins of bacteria (review)

  • A. M. Anuchin
  • A. V. Goncharenko
  • O. I. Demidenok
  • A. S. Kaprelyants
Article

Abstract

Four major families of bacterial histone-like proteins (HU, IHF, H-NS, FIS), united on the basis of structural similarity and performing specific structural and regulatory functions in the cell, are discussed. Histone-like proteins perform topological modification of the chromosome (twisting, bending, and folding) and directly regulate the functioning of promoters of individual operons. Histone-like proteins are critical for the regulation of cell metabolism, are involved in the response to environmental changes, and play a key role in the transition to and maintenance of the resting cells of bacteria.

Keywords

Apply Biochemistry Mycobacterium ispE Gene Nucleoid Structure Bacterial Nucleoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lewin, B., Genes, Oxford: Oxford Univ. Press, 1272.Google Scholar
  2. 2.
    Thanbichler, M., Wang, S.C., and Shapiro, L., J. Cell. Biochem., 2005, vol. 96, no. 3, pp. 506–521.PubMedCrossRefGoogle Scholar
  3. 3.
    Rouviere-Yaniv, J. and Gros, F., Proc. Natl. Acad. Sci. USA, 1975, vol. 72, no. 9, pp. 3428–3432.PubMedCrossRefGoogle Scholar
  4. 4.
    Dorman, C.G. and Deighan, P., Curr. Opin. Genet. Dev., 2003, vol. 13, no. 2, pp. 179–184.PubMedCrossRefGoogle Scholar
  5. 5.
    Swinger, K.K. and Rice, P.A., Curr. Opin. Struct. Biol., 2004, vol. 14, no. 1, pp. 28–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Goodman, S.D., Nickolson, S.C., and Nash, H.A., Proc. Natl. Acad. Sci. USA, 1992, vol. 89, no. 24, pp. 11910–11914.PubMedCrossRefGoogle Scholar
  7. 7.
    Kamashev, D., Balandina, A., and Rouviere-Yaniv, J., EMBO J., 1999, vol. 18, no. 19, pp. 5434–5444.PubMedCrossRefGoogle Scholar
  8. 8.
    Benevides, J.M., Danahy, J., Kawakami, J., and Thomas, G.J., Biochemistry, 2008, vol. 47, no. 12, pp. 3855–3862.PubMedCrossRefGoogle Scholar
  9. 9.
    Hodges-Garcia, Y., Hagerman, P.J., and Pettijohn, D.E., J. Biol. Chem., 1989, vol. 264, no. 25, pp. 14621–14623.PubMedGoogle Scholar
  10. 10.
    Dame, R.T. and Goosen, N., FEBS Lett., 2002, vol. 529, nos. 2–3, pp. 151–156.PubMedCrossRefGoogle Scholar
  11. 11.
    Lavoie, B.D. and Chaconas, G., Genes Dev., 1993, vol. 7, no. 12B, pp. 2510–2519.PubMedCrossRefGoogle Scholar
  12. 12.
    Megraw, T. and Chae, C., J. Biol. Chem., 1993, vol. 268.Google Scholar
  13. 13.
    Megraw, T.T., Kao, L.R., and Chae, C.B., Biochimie, 1994, vol. 76, nos. 10–11, pp. 909–916.PubMedCrossRefGoogle Scholar
  14. 14.
    Aki, T. and Adhya, S., EMBO J., 1997, vol. 16, no. 12, pp. 3666–3674.PubMedCrossRefGoogle Scholar
  15. 15.
    Liu, D., Yumoto, H., Murakami, K., Hirota, K., Ono, T., Nagamune, H., Kayama, S., Matsuo, T., and Miyake, Y., Mol. Microbiol., 2008, vol. 68, no. 5, pp. 1268–1282.PubMedCrossRefGoogle Scholar
  16. 16.
    Pontigga, A., Negri, A., Beltrame, M., and Bianchi, M.E., Mol. Microbiol., 1993, vol. 7, no. 3, pp. 343–350.CrossRefGoogle Scholar
  17. 17.
    Mukherjee, A., Bhattacharyya, G., and Grove, A., Biochemistry, 2008, vol. 47, no. 33, pp. 8744–8753.PubMedCrossRefGoogle Scholar
  18. 18.
    Shires, K. and Steyn, L., Mol. Microbiol., 2001, vol. 39, no. 4, pp. 994–1009.PubMedCrossRefGoogle Scholar
  19. 19.
    Katsube, T., Matsumoto, S., Takatsuka, M., Okuyama, M., Ozeki, Y., Naito, M., Nishiuchi, Y., Fujiwara, N., Yoshimura, M., Tsuboi, T., Torii, M., Oshitani, N., Arakawa, T., and Kobayashi, K., J. Bacteriol., 2007, vol. 189, no. 22, pp. 8241–8249.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, B.H., Murugasu-Oei, B., and Dick, T., Mol. Gen. Genet., 1998, vol. 260, pp. 475–479.PubMedCrossRefGoogle Scholar
  21. 21.
    Anuchin, A.M., Goncharenko, A.V., Demina, G.R., Mulyukin, A.L., Ostrovsky, D.N., and Kaprelyants, A.S., FEMS Microbiol. Letts., 2010, vol. 308, no. 2, pp. 101–107.Google Scholar
  22. 22.
    Anuchin, A.M., Goncharenko, A.V., Galon, I.V., Demidenok, O.I., Kudykina, Iu.K., Moisenovich, M.M., Muliukin, A.L., and Kaprelyants, A.S., Prikl. Biokhim. Mikrobiol., 2010, vol. 46, no. 3, pp. 308–314.PubMedGoogle Scholar
  23. 23.
    Stinson, M.W., McLaughlin, R., Choi, S.H., Juares, Z.E., and Barnard, J., Infect. Immun., 1998, vol. 66, no. 1, pp. 259–265.PubMedGoogle Scholar
  24. 24.
    Portugal, M.I., Todeschini, A.R., Lima, C.S., Silva, C.A., Mohana-Borges, R., Ottenhoff, T.H., Mendonca-Previato, L., Previato, J., and Pessolani, M.C., BMC Microbiol., 2008, vol. 8, p. 72.CrossRefGoogle Scholar
  25. 25.
    Mukherjee, A., DiMario, P.J., and Grove, A., FEMS Microbiol. Lett., 2009, vol. 291, no. 2, pp. 232–240.PubMedCrossRefGoogle Scholar
  26. 26.
    Ryan, V.T., Grimwade, J.E., Nievera, C.J., and Leonard, A.C., Mol. Microbiol., 2002, vol. 46, no. 1, pp. 121–124.CrossRefGoogle Scholar
  27. 27.
    Rampioni, G., Leoni, L., Pietrangeli, B., and Zennaro, E., BMC Microbiol., 2008, vol. 8.Google Scholar
  28. 28.
    Galan, B., Kolb, A., Garcia, J.L., and Prieto, M.A., J. Biol. Chem., 2001, vol. 276, no. 40, pp. 37060–37068.PubMedCrossRefGoogle Scholar
  29. 29.
    Rimsky, S., Curr. Opin. Microbiol., 2004, vol. 7, no. 2, pp. 109–114.PubMedCrossRefGoogle Scholar
  30. 30.
    Tendeng, C. and Bertin, P.N., Trends Microbiol., 2003, vol. 11, no. 11, pp. 511–518.PubMedCrossRefGoogle Scholar
  31. 31.
    Dorman, C.J., Hinton, J.C., and Free, A., Trends Microbiol., 1999, vol. 7, no. 3, pp. 124–128.PubMedCrossRefGoogle Scholar
  32. 32.
    Ceschini, S., Lupidi, G., Coletta, M., Pon, C.L., Fioretti, E., and Angeletti, M., J. Biol. Chem., 2000, vol. 275, no. 2, pp. 729–734.PubMedCrossRefGoogle Scholar
  33. 33.
    Dame, R.T., Wymanb, C., and Goosen, N., Biochimie, 2001, vol. 83, no. 2, pp. 231–234.PubMedCrossRefGoogle Scholar
  34. 34.
    Morales, P., Rouviere-Yaniv, J., and Dreyfus, M., J. Bacteriol., 2002, vol. 184, no. 6, pp. 1565–1570.PubMedCrossRefGoogle Scholar
  35. 35.
    Hommais, F., Krin, E., Laurent-Winter, C., Soutonina, O., Malpertuy, A., Le Caer, J.P., Danchin, A., and Bertin, P, Mol. Microbiol., 2001, vol. 40, no. 1, pp. 20–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Schroder, O. and Wagner, R., Biol. Chem., 2002, vol. 383, no. 6, pp. 945–960.PubMedCrossRefGoogle Scholar
  37. 37.
    Yu, R.R. and DiRita, V.J., Mol. Microbiol., 2002, vol. 43, no. 1, pp. 119–134.PubMedCrossRefGoogle Scholar
  38. 38.
    Navarre, W.W., McClelland, M., Libby, S.J., and Fang, F.C., Genes Dev., 2007, vol. 21, no. 12, pp. 1456–1471.PubMedCrossRefGoogle Scholar
  39. 39.
    Swingle, B., O’Carrol, M., Haniford, D., and Derbyshire, K.M., Mol. Microbiol., 2004, vol. 52, no. 4, pp. 1055–1067.PubMedCrossRefGoogle Scholar
  40. 40.
    Wardle, S.J., O’Carrol, M., Derbyshire, K.M., and Haniford, D.B., Genes Dev., 2005, vol. 19, no. 18, pp. 2224–2235.PubMedCrossRefGoogle Scholar
  41. 41.
    Kostrewa, D., Granzin, J., Koch, C., Choe, H.W., Raghunthan, S., and Wolf, W., Nature, 1991, vol. 349, no. 6305, pp. 178–180.PubMedCrossRefGoogle Scholar
  42. 42.
    Shao, Y., Feldman-Cohen, L.S., and Osuna, R., J. Mol. Biol., 2008, vol. 380, no. 2, pp. 327–339.PubMedCrossRefGoogle Scholar
  43. 43.
    Ball, A., Osuna, R., Ferguson, K.C., and Jonson, R.C., J. Bacteriol., 1992, vol. 174, no. 24, pp. 8043–8056.PubMedGoogle Scholar
  44. 44.
    Azam, T.A. and Ishihama, A., J. Biol. Chem., 1999, vol. 274, no. 46, pp. 33105–33113.PubMedCrossRefGoogle Scholar
  45. 45.
    Ninnemann, O., Koch, C., and Kahmann, R., EMBO J., 1992, vol. 11, no. 3, pp. 1075–1083.PubMedGoogle Scholar
  46. 46.
    Travers, A., Schneider, R., and Muskhelishvili, G., Biochimie, 2001, vol. 83, no. 2, pp. 213–217.PubMedCrossRefGoogle Scholar
  47. 47.
    Schneider, R., Travers, A., Kutateladze, T., and Muskhelishvili, G., Mol. Microbiol., 1999, vol. 34, no. 5, pp. 953–964.PubMedCrossRefGoogle Scholar
  48. 48.
    Weinstein-Fischer, D., Elgrably-Weiss, M., and Altuvia, S., Mol. Microbiol., 2000, vol. 35, no. 6, pp. 1413–1420.PubMedCrossRefGoogle Scholar
  49. 49.
    Falconi, M., Prosseda, G., Giangrossi, M., Beghetto, E., and Colonna, J., Mol. Microbiol., 2001, vol. 42, no. 2, pp. 439–452.PubMedCrossRefGoogle Scholar
  50. 50.
    Walker, K.A., Atkins, C.L., and Osuna, R., J. Bacteriol., 1999, vol. 181, no. 4, pp. 1269–1280.PubMedGoogle Scholar
  51. 51.
    Ailyar, S.E., McLeod, S.M., Ross, W., Hirownen, C.A., Thomas, M.S., Jonson, R.C., and Gourse, R.L., J. Mol. Biol., 2002, vol. 316, no. 3, pp. 501–516.CrossRefGoogle Scholar
  52. 52.
    Hirvonen, C.A., Ross, W., Wozniac, C.E., Marasco, E., Anthony, J.R., Aiyar, S.E., Newburn, V.H., and Gourse, R.L., J. Bacteriol., 2001, vol. 183, no. 21, pp. 6305–6314.PubMedCrossRefGoogle Scholar
  53. 53.
    Husnain, S.I. and Thomas, M.S., Microbiology, vol. 154, no. 6, pp. 1729–1738.Google Scholar
  54. 54.
    Browning, D.F., Cole, J.A., and Busby, J.W., Mol. Microbiol., 2004, vol. 53, no. 1, pp. 496–510.CrossRefGoogle Scholar
  55. 55.
    Browning, D.F., Cole, J.A., and Busby, S.J., J. Bacteriol., 2008, vol. 190, no. 21, pp. 7258–7267.PubMedCrossRefGoogle Scholar
  56. 56.
    Chen, J.M., Ren, H., Shaw, J.E., Wang, Y.J., Li, M., Leung, A.S., Tran, V., Berbenetz, N.M., Kocincova, D., Yip, C.M., Reyrat, J.M., and Liu, J., Nucleic Acids Res., 2008, vol. 36, no. 7, pp. 2123–2135.PubMedCrossRefGoogle Scholar
  57. 57.
    Grieshaber, N.A., Sager, J.B., Dooley, C.A., Hayes, S.F., and Hackstadt, T., J. Bacteriol., 2006, vol. 188, no. 14, pp. 5289–5292.PubMedCrossRefGoogle Scholar
  58. 58.
    Baaklini, I., Usongo, V., Nolent, F., Sanscartier, P., Hraiky, C., Drlica, K., and Drolet, M., J. Bacteriol., 2008, vol. 190, no. 22, pp. 7346–7356.PubMedCrossRefGoogle Scholar
  59. 59.
    Luijsterburg, M.S., White, M.F., Driel, R., and Dame, R.T., Crit. Rev. Biochem. Mol. Biol., 2008, vol. 43, no. 6, pp. 393–418.PubMedCrossRefGoogle Scholar
  60. 60.
    Dame, R.T., Wyman, C., Wurm, R., Wagner, R., and Goosen, N., J. Biol. Chem., 2002, vol. 277, no. 3, pp. 2146–2150.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. M. Anuchin
    • 1
  • A. V. Goncharenko
    • 1
  • O. I. Demidenok
    • 1
  • A. S. Kaprelyants
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations