Applied Biochemistry and Microbiology

, Volume 47, Issue 4, pp 419–425 | Cite as

Antioxidant components of Laetiporus sulphureus (Bull.: Fr.) Murr. fruit bodies

  • D. N. OlennikovEmail author
  • L. M. Tankhaeva
  • S. V. Agafonova


Antioxidant activity of fruit bodies of Laetiporus sulphureus (Bull.: Fr.) Murr. (Polyporales) obtained by the natural plantation growing method in Pribaikal’e (Irkutsk region) has been studied. It was determined that the ethyl acetate fraction of L. sulphureus, which was chromatographically separated into seven compounds identified as quercetin, kaempferol, (+)-catechin, p-coumaric, gallic, caffeic, and chlorogenic acids was characterized with more expressed antioxidant activity. All compounds were extracted from this basidiomycete species for the first time. The quantitative amount of the substances isolated from L. sulphureus was determined by HPLC. It was found that antioxidant activity of preparations obtained from L. sulphureus is conditioned by phenolic compounds.


Antioxidant Activity Quercetin DPPH Apply Biochemistry Gallic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




LF-1 and LF-2

fractions of extractable substances from mycothalluses of L. sulphureus


total antioxidant potential


high-performance thin-layer chromatography




total content of phenolic compounds


total content of flavonoids


total content of carotinoids


total content of polysaccharides


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wasser, S.P. and Weis, A.L., Int. J. Med. Mushrooms, 1999, vol. 1, no. 1, pp. 31–62.Google Scholar
  2. 2.
    Zjawiony, J.K., J. Nat. Prod., 2004, vol. 67, no. 2, pp. 300–310.PubMedCrossRefGoogle Scholar
  3. 3.
    Raduc, N., Injac, R., and Strukelj, B., Int. J. Med. Mushrooms, 2009, vol. 11, no. 2, pp. 103–116.CrossRefGoogle Scholar
  4. 4.
    Kang, Ch.Y., Lee, Ch.O., Chung, K.S., Choi, E., and Kim, B.K., Arch. Pharm. Res., 1982, vol. 5, no. 2, pp. 39–43.CrossRefGoogle Scholar
  5. 5.
    Konska, G., Guillot, J., Dusser, M., Damez, M., and Botton, B., J. Biochem., 1994, vol. 116, no. 3, pp. 519–523.PubMedGoogle Scholar
  6. 6.
    Okamura, T., Takeno, T., Fukuda, Sh., Mohri, A., Noda, A., Iemoto, A., Horie, N., and Ohsugi, M., Bull. Mukogawa Women’s Univ. Nat. Sci., 2000, vol. 48, no. 1, pp. 65–68.Google Scholar
  7. 7.
    Okamura, T., Takeno, T., Dohi, M., Yasumasa, I., Hayashi, T., Toyoda, M., Noda, K., Fukuda, S., Horie, N., and Ohsugi, M., J. Biosci. Bioeng., 2000, vol. 89, no. 5, pp. 474–478.PubMedCrossRefGoogle Scholar
  8. 8.
    Leon, F., Quintana, J., Rivera, A., Estevez, F., and Bermejo, J., J. Nat. Prod., 2004, vol. 67, no. 12, pp. 2008–2011.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshikawa, K., Bando, S., Arihara, S., Matsumura, E., and Katayama, S., Chem. Pharm. Bull., 2001, vol. 49, no. 3, pp. 327–329.PubMedCrossRefGoogle Scholar
  10. 10.
    Keller, C., Maillard, M., and Keller, J., Hostettmann K., Pharm. Biol., 2002, vol. 40, no. 7, pp. 518–525.CrossRefGoogle Scholar
  11. 11.
    Turkoglu, A., Duru, E.M., Mercan, N., Kivrak, I., and Gezer, K., Food Chem., 2007, vol. 101, no. 2, pp. 267–273.CrossRefGoogle Scholar
  12. 12.
    Hwang, H.S., Lee, S.H., Baek, Y.M., Kim, S.W., Jeong, Y.K., and Yun, J.W., Appl. Microbiol. Biotechnol., 2008, vol. 78, no. 3, pp. 419–429.PubMedCrossRefGoogle Scholar
  13. 13.
    Olennikov, D.N., Agafonova, S.V., Borovskii, G.B., Penzina, T.A., and Rokhin, A.V., Appl. Biochem. Microbiol., 2009, vol. 45, no. 5, pp. 536–543.CrossRefGoogle Scholar
  14. 14.
    Vermerris, W. and Nicholson, R., Phenolic Compound Biochemistry, New York: Springer, 2006, pp. 151–196.CrossRefGoogle Scholar
  15. 15.
    Galvez, M., Martin-Cordero, C., Houghton, P.J., and Ayuso, M.J., J. Agric. Food Chem., 2005, vol. 53, no. 6, pp. 1927–1933.PubMedCrossRefGoogle Scholar
  16. 16.
    Ren, D. and Zhang, Sh., Food Chem., 2008, vol. 106, no. 1, pp. 410–414.CrossRefGoogle Scholar
  17. 17.
    Olennikov, D.N., Tankhaeva, L.M., and Samuelsen, A.B., Chem. Natural Comp., 2006, vol. 42, no. 3, pp. 265–268.CrossRefGoogle Scholar
  18. 18.
    Preito, P., Pineda, M., and Aguilar, M., Anal. Biochem., 1999, vol. 269, no. 2, pp. 337–341.CrossRefGoogle Scholar
  19. 19.
    Lee, Y., Howard, L.R., and Villalon, B., J. Food Sci., 1995, vol. 60, no. 3, pp. 473–476.CrossRefGoogle Scholar
  20. 20.
    Mathew, S. and Ablaham T.E, Food. Chem., 2006, vol. 94, no. 2, pp. 520–528.CrossRefGoogle Scholar
  21. 21.
    Kim, M.-Y., Seguin, Ph., Ahn, J.-K., Kim, J.-J., Chun, S.-Ch., Kim, E.-H., Seo, S.-H., Kang, E.-Y., Kim, S.-L., Park, Y.-J., Ro, H.-M., and Chung, I.-M., J. Agric. Food Chem., 2008, vol. 56, no. 16, pp. 7265–7270.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • D. N. Olennikov
    • 1
    Email author
  • L. M. Tankhaeva
    • 1
  • S. V. Agafonova
    • 2
  1. 1.Institute of General and Experimental Biology, Siberian BranchRussian Academy of SciencesUlan-Ude, Buryatia RepublicRussia
  2. 2.Siberian Institute of Plant Physiology and Biochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations