Advertisement

Applied Biochemistry and Microbiology

, Volume 47, Issue 3, pp 304–310 | Cite as

Bioengineering of symbiotic systems: Creation of new associative symbiosis with the use of lectins on the example of tobacco and oil seed rape

  • Z. R. Vershinina
  • An. Kh. Baimiev
  • D. K. Blagova
  • A. V. Knyazev
  • Al. Kh. Baimiev
  • A. V. Chemeris
Article

Abstract

Hairy roots in tobacco and oil seed rape transgenic on lectin gene were obtained with the use of a wild strain of Agrobacterium rhizogenes 15834 transformed with pCAMBIA1305.1 plasmid containing the full-size lectin gene (psl) from the Pisum sativum. Influence of expression of lectin gene on colonization of transgenic roots with symbiont of pea (Rhizobium leguminosarum) was investigated. The number of adhered bacteria onto the roots transformed with lectin gene was 14-fold and 37-fold higher in comparison with the control; this confirms the interaction of R. leguminosarum with pea lectin at the surface of the transformed roots of tobacco and oil seed rape. The developed experimental approach, based on the simulation of recognition processes and early symbiotic interactions with lectins of pea plants, may, in perspective, be used for obtaining stable associations of economically valuable, nonsymbiotrophic plant species with rhizobia.

Keywords

Apply Biochemistry Hairy Root Rhizobium Agrobacterium Rhizogenes Lectin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yemtsev, V.T., Eurasian Soil Sci., 1994, vol. 26, no. 9, pp. 42–57.Google Scholar
  2. 2.
    Vallad, G.E. and Goodman, R.M., Crop Sci. Soc. Am., 2004, vol. 44, no. 6, pp. 1920–1934.CrossRefGoogle Scholar
  3. 3.
    Ignatov, V.V., Soros. Obrazovat. Zh., 1998, no. 9, pp. 28–33.Google Scholar
  4. 4.
    Tikhonovich, I.A. and Provorov, N.A., Vestnik VOGi, 2005, vol. 9, no. 3, pp. 295–305.Google Scholar
  5. 5.
    Shakirova, F.M. and Bezrukova, M.V., Zh. Obshch. Biol., 2007, vol. 68, no. 2, pp. 109–125.PubMedGoogle Scholar
  6. 6.
    Radchuk, V.V. and Blume, Ya.B., Tsitol. Genet., 2005, no. 3, pp. 13–29.Google Scholar
  7. 7.
    Diaz, C.L., Melchers, L.S., Hooykaas, P.J.J., Lugtenberg, B.J.J., and Kijne, J.W., Nature, 1989, vol. 338, no. 6216, pp. 579–581.CrossRefGoogle Scholar
  8. 8.
    Pheler, M., Petit, M., Martin, L., Duhoux, E., and Tempe, J., Lam. Biotechnol., 1991, vol. 9, no. 5, pp. 461–466.CrossRefGoogle Scholar
  9. 9.
    Diouf, D., Gherbi, H., Prin, Y., Franche, C., Duhoux, E., and Bogusz, D., Mol. Plant Microbe Interact., 1995, vol. 8, no. 4, pp. 532–537.PubMedCrossRefGoogle Scholar
  10. 10.
    Akasaka, Y., Mii, M., and Daimon, H., Ann. Bot., 1998, vol. 81, no. 2, pp. 355–362.CrossRefGoogle Scholar
  11. 11.
    Hirsch, A.M., Brill, L.M., Lim, P.O., Scambray, J., and Van Rhijn, P., Symbiosis, 1995, vol. 19, nos. 2–3, pp. 155–173.Google Scholar
  12. 12.
    Diaz, C.L., Spaink, H.P., and Kijne, J.W., Mol. Plant Microbe Interact., 2000, vol. 13, no. 3, pp. 268–276.PubMedCrossRefGoogle Scholar
  13. 13.
    Diouf, D., Diop, T.A., and Ndoye, I., Afr. J. Biotechnol., 2003, vol. 2, no. 1, pp. 1–7.Google Scholar
  14. 14.
    Gibson, A.H., Child, J.J., Pagan, J.D., and Scowcroft, W.R., Planta, 1976, vol. 128, no. 3, pp. 233–242.CrossRefGoogle Scholar
  15. 15.
    Baulina, O.I., Agafodorova, M.N., Korzhenevskaya, T.G., Gusev, M.V., and Butenko, R.G., Mikrobiologiya, 1984, vol. 53, no. 6, pp. 997–1002.Google Scholar
  16. 16.
    Gorelova, O.A., Lobakova, E.S., and Korzhenevskaya, T.G., Vestn. Mosk. Univ., Ser. 16. Biol., 2004, no. 3, pp. 39–44.Google Scholar
  17. 17.
    Banerjee, M. and Yesmin, L., US Patent No. 07491535, 2002.Google Scholar
  18. 18.
    Koval’skaya, N.Yu., Lobakova, E.S., and Umarov, M.M., Mikrobiologiya, 2001, vol. 50, no. 5, pp. 701–708.Google Scholar
  19. 19.
    Chao, W.L., Lett. Appl. Microbiol., 1990, vol. 10, no. 5, pp. 213–215.CrossRefGoogle Scholar
  20. 20.
    Hoflich, G., Wiehe, W., and Buchholz, C.H., Microbiol. Res., 1995, vol. 150, no. 2, pp. 139–147.Google Scholar
  21. 21.
    Chabot, R.H., Antoun, H., Kloepper, J., and Beauchamp, C., Appl. Environ. Microbiol., 1996, vol. 62, no. 8, pp. 2767–2772.PubMedGoogle Scholar
  22. 22.
    Gutierrez-Zamora, M.L. and Martinez-Romero, E., J. Biotechnol., 2001, vol. 91, nos. 2–3, pp. 117–126.PubMedCrossRefGoogle Scholar
  23. 23.
    Chi, F., Shen, S.H., Cheng, H.P., Jing, Y.X., Yanni, Y.G., and Dazzo, F.B., Appl. Environ. Microbiol., 2005, vol. 71, no. 11, pp. 7271–7278.PubMedCrossRefGoogle Scholar
  24. 24.
    Perrine-Walker, F.M., Prayitno, J., Rolfe, B.G., Weinman, J.J., and Hocart, C.H., J. Exp. Bot., 2007, vol. 58, no. 12, pp. 3343–3350.PubMedCrossRefGoogle Scholar
  25. 25.
    Biswas, J.C., Ladha, J.K., Dazzo, F.B., Yanni, Y.G., and Rolfe, B.G., Agron. J., 2000, vol. 92, no. 5, pp. 880–886.CrossRefGoogle Scholar
  26. 26.
    Til’ba, V.A., Begun, S.A., and Yakimenko, M.V., Vestn. RASKhN, 2004, no. 5, pp. 28–30.Google Scholar
  27. 27.
    Cheremnykh, A.V., Egorov, S.Yu., and Kupriyanova-Ashina, F.G., Kazan. Gos. Univ., Uchen. Zap. Ser.: Estestv. Nauki, 2007, vol. 149, pp. 94–104.Google Scholar
  28. 28.
    Gatehouse, J.A., Bown, D., Evans, I.M., Gatehouse, L.N., Jobes, D., Preston, P., and Croy, R.R.D., Nucleic Acids Res., 1987, vol. 15, no. 18, p. 7642.PubMedCrossRefGoogle Scholar
  29. 29.
    Henzi, M.X., Christey, M.C., and McNeil, D.L., Plant Cell Rep., 2000, vol. 19, no. 10, pp. 994–999.CrossRefGoogle Scholar
  30. 30.
    Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor: Cold Spring Harbor Lab. Press, 1972.Google Scholar
  31. 31.
    Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.C., and Fraley, R.T., Science, 1985, vol. 227, no. 4691, pp. 1229–1231.CrossRefGoogle Scholar
  32. 32.
    Murashige, T. and Skoog, F., Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.CrossRefGoogle Scholar
  33. 33.
    Grodzinskii, A.M. and Grodzinskii, D.M., Kratkii spravochnik po fiziologii rastenii (Short Guide to Plant Physiology), Kiev: Naukova dumka, 1973.Google Scholar
  34. 34.
    Jefferson, R.A., Plant Mol. Biol. Report., 1987, vol. 5, no. 1, pp. 387–405.CrossRefGoogle Scholar
  35. 35.
    Kosugi, S., Ohashi, Y., Nakajima, K., and Arai, Y., Plant Sci., 1990, vol. 70, no. 4, pp. 133–140.CrossRefGoogle Scholar
  36. 36.
    Menze, A. and Mollers, C., Proc. 10th Int. Rapeseed Congress, Canberra: Australia, 1999, pp. 15–20.Google Scholar
  37. 37.
    Dazzo, F.B. and Truchet, G.L., J. Membr. Biol., 1983, vol. 73, no. 3, pp. 4–11.Google Scholar
  38. 38.
    Kijne, J.W., Diaz, C.L., and Pater, S., in Adv. Lectin Res., Franz, H., Driessche, E., and Kasai, K.J., Eds., Berlin: Ullstein Mosby, 1992, pp. 15–50.Google Scholar
  39. 39.
    Cocking, E.C. and Davey, M.R., Chem. Industry, 1991, vol. 22, no. 6, pp. 831–835.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • Z. R. Vershinina
    • 1
  • An. Kh. Baimiev
    • 1
  • D. K. Blagova
    • 1
  • A. V. Knyazev
    • 1
  • Al. Kh. Baimiev
    • 1
  • A. V. Chemeris
    • 1
  1. 1.Institute of Biochemistry and Genetics, Ufa Scientific CenterRussian Academy of SciencesUfaRussia

Personalised recommendations