Applied Biochemistry and Microbiology

, Volume 47, Issue 3, pp 256–263 | Cite as

Rapid differentiation of bacterial species by high resolution melting curve analysis



Molecular based differentiation of various bacterial species is important in phylogenetic studies, diagnostics and epidemiological surveillance, particularly where unusual phenotype makes the classical phenotypic identification of bacteria difficult. Molecular approach based on the sequence of 16S ribosomal RNA gene analysis can achieve fast and reliable identification of bacteria. High resolution melting (HRM) curve analysis has been developed as an attractive novel technique for DNA sequence discrimination but it’s application for bacteria differentiation has not been well studied yet. We have developed HRM assay for differentiation of sixteen pathogenic or opportunistic bacterial species. Amplified partial 16S ribosomal RNA gene region between 968 and 1401 positions (E. coli reference numbering) was subsequently used in high resolution melting curve analysis of PCR products for bacterial species differentiation. Sixteen bacterial species were simultaneously discerned by difference plot of normalized and temperatures shifted melting curves, without need for spiking of DNA, hetero-duplexing experiments or application of several primer pairs. High resolution melting curve analysis of duplex DNA is simple, fast and reliable tool for bacterial species differentiation and may efficiently complement phenotypic identification of bacteria.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hugenholtz, P., Goebell, B.M., and Pace, R.N., J. Bacteriol., 1998, vol. 180, no. 18, pp. 4765–4774.PubMedGoogle Scholar
  2. 2.
    Klaschik, S., Lehman, L.E., Raadts, A., Book, M., Gebel, J., Hoeft A., and Stuber, F., J. Clin. Microbiol., 2004, vol. 42, no. 2, pp. 512–517.PubMedCrossRefGoogle Scholar
  3. 3.
    Fortini, D., Ciammaruconi, A., De Santis, R., Fasanella, A, Battisti, A., D’Amellio, R., Lista, F., Cassone, A., and Carratoli, A., Clin. Chem., 2007, vol. 53, no. 7, pp. 1377–1380.PubMedCrossRefGoogle Scholar
  4. 4.
    Price, E.P., Smith, H., Huygens, F., and Giffard, P.M., Appl. Environ. Microbiol., 2007, vol. 73, no. 10, pp. 3431–3436.PubMedCrossRefGoogle Scholar
  5. 5.
    Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.P., and Raoult, D., J. Clin. Microbiol., 2000, vol. 38, no. 10, pp. 3623–3630.PubMedGoogle Scholar
  6. 6.
    Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T., and Tanaka, R., Appl. Environ. Microbiol., 2004, vol. 70, no. 12, pp. 7220–7228.PubMedCrossRefGoogle Scholar
  7. 7.
    Bartosch, S., Fite, A., Macfarlane, G.T., and McMurdo, M.E.T., Appl. Environ. Microbiol., 2004, vol. 70, no. 6, pp. 3575–3581.PubMedCrossRefGoogle Scholar
  8. 8.
    Woese, C.R., Microbiol. Rev., 1987, vol. 51, no. 2, pp. 221–271.PubMedGoogle Scholar
  9. 9.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J., J. Bacteriol., 1991, vol. 173, no. 2, pp. 697–703.PubMedGoogle Scholar
  10. 10.
    Clarridge, III J.E., Clin. Microbiol. Rev., 2004, vol. 17, no. 4, pp. 840–862.PubMedCrossRefGoogle Scholar
  11. 11.
    Wittwer, C.T., Reed, G.H., Gundry, C.N., Vandersteen, J.G., and Pryor, R.J., Clin. Chem., 2003, vol. 49, no. 6, pp. 853–860.PubMedCrossRefGoogle Scholar
  12. 12.
    Lay, M.J. and Wittwer, C.T., Clin. Chem., 1997, vol. 43, no. 12, pp. 2262–2267.PubMedGoogle Scholar
  13. 13.
    Ririe, K.M., Rasmussen, R.P., and Wittwer, C.T., Anal. Biochem., 1997, vol. 245, pp. 154–160.PubMedCrossRefGoogle Scholar
  14. 14.
    Herrmann, M.G., Durtschi, J.D., Bromley, L.K., Wittwer, C.T., and Voelkerding, K.V., Clin. Chem., 2006, vol. 52, no. 3, pp. 494–503.PubMedCrossRefGoogle Scholar
  15. 15.
    Odell, I.D., Cloud, J.L., Seipp, M., and Wittwer, C.T., Am. J. Clin. Pathol., 2005, vol. 123, pp. 96–101.PubMedCrossRefGoogle Scholar
  16. 16.
    Cheng, J.C., Huang, C.L., Lin, C.C., Chen, C.C., Chang, Y.C., Chang, S.S., and Tseng, C.P., Clin. Chem., 2006, vol. 52, no. 11, pp. 1997–2004.PubMedCrossRefGoogle Scholar
  17. 17.
    Nuebel, U., Engelen, B., Felske, A., Snaidr, J., Weishuber, A., Amann, R.I., et al., J. Bacteriol., 1996, vol. 178, no. 19, pp. 5636–5643.Google Scholar
  18. 18.
    McGinnis, S., and Madden, T.L., Nucl. Acids Res., 2004, vol. 32, pp. W20–W25.PubMedCrossRefGoogle Scholar
  19. 19.
    Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmoughin, F., and Higgins, D.G., Nucl. Acids Res., 1997, vol. 25, no. 24, pp. 4876–4882.PubMedCrossRefGoogle Scholar
  20. 20.
    Wittwer, C.T., Herrmann, M.G., Moss. A.A., and Rasmussen, R.P., BioTechniques, 1997, vol. 22, no. 1, pp. 130–138.PubMedGoogle Scholar
  21. 21.
    Reed, G.H., and Wittwer, C.T., Clin. Chem., 2004, vol. 50, no. 10, pp. 1748–1754.PubMedCrossRefGoogle Scholar
  22. 22.
    Clayton, R.A., Sutton, G., Hinkle, P.S., Bult, C., and Fieds, C., Int. J. Syst. Bacteriol., 1995, vol. 45, no. 3, pp. 595–599.PubMedCrossRefGoogle Scholar
  23. 23.
    Gundry, C.N., Vandersteen, J.G., Reed, G.H., Proyor, R.J., Chen, J., and Wittwer, C.T., Clin. Chem., 2003, vol. 49, no. 3, pp. 396–406.PubMedCrossRefGoogle Scholar
  24. 24.
    Yu, Z., Morrison, M., Appl. Environ. Microbiol., 2004, vol. 70, no. 8, pp. 4800–4806.PubMedCrossRefGoogle Scholar
  25. 25.
    Seksik, P., Rigottier-Gois, L., Gramet, G., Sutren, M., Pochart, P., Marteau, P., Jian, R., and Dore, J., Gut, 2003, vol. 52, no. 2, pp. 237–242.PubMedCrossRefGoogle Scholar
  26. 26.
    Zoetendal, E.G., von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A.D.L., and de Vos, W.M., Appl. Environ. Microbiol., 2002, vol. 68, no. 7, pp. 3401–3407.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Center for Human Molecular Genetics and Pharmacogenomics, Medical FacultyUniversity of MariborMariborSlovenia
  2. 2.Faculty of Chemistry and Chemical technologyUniversity of MariborMariborSlovenia

Personalised recommendations