Applied Biochemistry and Microbiology

, Volume 46, Issue 1, pp 1–14

Extremophilic microorganisms: Biochemical adaptation and biotechnological application (review)

  • E. V. Morozkina
  • E. S. Slutskaya
  • T. V. Fedorova
  • T. I. Tugay
  • L. I. Golubeva
  • O. V. Koroleva
Article

Abstract

In this review, we analyzed modern data on the biochemical adaptation of microorganisms to living under extreme conditions. Special attention is given to analysis of adaptation responses of microorganisms under exposure to increased radiation at molecular and cellular levels. Data on the practical use of extremophiles as well as extremoenzymes, biologically active compounds, biopolymers, etc., synthesized by them are systematized.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rothschild, L.J. and Mancinelli, R.L., Nature, 2001, vol. 490, pp. 1092–1101.CrossRefGoogle Scholar
  2. 2.
    Adams, M.W.W. and Kelly, R.M., C. E. News, 1995, vol. 73, pp. 32–42.Google Scholar
  3. 3.
    Vieille, C. and Zeikus, G.J., Microbiol. Mol. Biol. Rev., 2001, vol. 65, pp. 1–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Unsworth, L.D., van der Oost, J., and Koutsopoulos, S., FEBS J., 2007, vol. 274, pp. 4044–4056.PubMedCrossRefGoogle Scholar
  5. 5.
    Matsui, I. and Harata, K., FEBS J., 2007, vol. 274, pp. 4012–4022.PubMedCrossRefGoogle Scholar
  6. 6.
    Tehei, M. and Zacca, G., FEBS J., 2007, vol. 274, pp. 4034–4043.PubMedCrossRefGoogle Scholar
  7. 7.
    Luke, K.A., Higgins, C.L., and Wittung-Stafshede, P., FEBS J., 2007, vol. 274, pp. 4023–4033.PubMedCrossRefGoogle Scholar
  8. 8.
    Detkova, E.N. and Pusheva, M.A., Mikrobiologiya, 2006, vol. 75, no. 1, pp. 5–17.Google Scholar
  9. 9.
    Hamana, K., Tanaka, T., Hosoya, R., Niitsu, M., and Itoh, T., J. Gen. Appl. Microbiol., 2003, vol. 49, pp. 287–293.PubMedCrossRefGoogle Scholar
  10. 10.
    Kashefi, K. and Lovley, D.R., Science, 2003, vol. 301, p. 934.PubMedCrossRefGoogle Scholar
  11. 11.
    Daniel, R.M., Cowan, D. A., Cell. Mol. Life Sci., 2000, vol. 57, pp. 250–264.PubMedCrossRefGoogle Scholar
  12. 12.
    Hickey, D.A., Singer, G.A., Genome Biol., 2004, vol. 5, no. 10, p. 117.PubMedCrossRefGoogle Scholar
  13. 13.
    Van de Vossenberg, J.L., Albers, S.-V., Driessen, A.J.M., and Konings, W.N., Extremophiles, 2001, vol. 5, pp. 285–294.PubMedGoogle Scholar
  14. 14.
    Kitano, T., Onoue, T., and Yamauchi, K., Chem. Phys. Lipids, 2003, vol. 126, pp. 225–232.PubMedCrossRefGoogle Scholar
  15. 15.
    Tolner, B., Poolman, B., and Konings, W.N., Comp. Biochem. Physiol., 1998, vol. 118A, pp. 423–428.Google Scholar
  16. 16.
    Atomi, H., Matsumi, R., and Imanaka, T., J. Bacteriol., 2004, vol. 14, pp. 4829–4833.CrossRefGoogle Scholar
  17. 17.
    Kneifel, H., Stetter, K.O., Andreesen, J.R., Weigel, J., Ko Nig, H., and Schoberth, S.M., Syst. Appl. Microbiol., 1986, vol. 7, pp. 241–245.Google Scholar
  18. 18.
    Wang, H-C., Xia, X., and Hickey, D., J. Mol. Evol., 2006, pp. 120–125.Google Scholar
  19. 19.
    Stetter, K.O., FEBS Lett., 1999, vol. 452, pp. 22–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Edmonds, C.G., Crain, P.F., Gupta, R., Hashizume, T., Hocart, C.H., Kowalak, J.A., Pomerantz, S.C., Stetter, K., and McCloskey, J.A., J. Bacteriol., 1991, vol. 173, pp. 3138–3148.PubMedGoogle Scholar
  21. 21.
    Laksanalamai, P. and Robb, F.T., Extremophiles, 2004, vol. 8, pp. 1–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim, K.K., Kim, R., and Kim, S.H., Nature, 1998, vol. 394, pp. 595–599.PubMedCrossRefGoogle Scholar
  23. 23.
    Van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C., and Vierling, E., Nat. Struct. Biol., 2001, vol. 8, pp. 1025–1030.PubMedCrossRefGoogle Scholar
  24. 24.
    Deming, J.W., Curr. Opin. Microbiol., 2002, vol. 5, pp. 301–309.PubMedCrossRefGoogle Scholar
  25. 25.
    Wharton, D.A. and Ferns, D.J., J. Exp. Biol., 1995, vol. 198, pp. 1381–1387.PubMedGoogle Scholar
  26. 26.
    Feller, G. and Gerday, C., Cell. Mol. Life Sci., 1997, vol. 53, pp. 830–841.PubMedCrossRefGoogle Scholar
  27. 27.
    Abe, F., Biosci. Biotechnol. Biochem., 2007, vol. 71, no. 10, pp. 2347–2357.PubMedCrossRefGoogle Scholar
  28. 28.
    Abe, F. and Horikoshi, K., Trends Biotechnol., 2001, vol. 19, no. 3, pp. 102–108.PubMedCrossRefGoogle Scholar
  29. 29.
    Kato, C. and Barlett, D.H., Extremophiles, 1997, vol. 1, pp. 111–116.PubMedCrossRefGoogle Scholar
  30. 30.
    Robinson, C.R. and Sligar, S.G., Methods Enzymol., 1995, vol. 259, pp. 395–427.PubMedCrossRefGoogle Scholar
  31. 31.
    Gross, M., Lehle, K., Jaenicke, R., and Nierhaus, K.H., Eur. J. Biochem., 1993, vol. 218, pp. 463–468.PubMedCrossRefGoogle Scholar
  32. 32.
    Heremans, K. and Smeller, L., Biochim. Biophys. Acta, 1998, vol. 1386, pp. 353–370.PubMedGoogle Scholar
  33. 33.
    Horikoshi, K., Curr. Microbiol., 1998, vol. 1, pp. 291–295.CrossRefGoogle Scholar
  34. 34.
    Bartlett, D., Wright, M., Yayanos, A., and Silverman, M.I., Nature, 1989, vol. 342, pp. 572–574.PubMedCrossRefGoogle Scholar
  35. 35.
    Welch, T.J. and Bartlett, D.H., J. Bacteriol., 1996, vol. 178, pp. 5027–5031.PubMedGoogle Scholar
  36. 36.
    Chi, E. and Bartlett, D.H., Mol. Microbiol., 1995, vol. 17, pp. 713–726.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, L., Kato, C., and Horikoshi, K., FEMS Microbiol. Letts., 1998, vol. 159, pp. 159–166.CrossRefGoogle Scholar
  38. 38.
    Welch, T.J. and Bartlett, D.H., Mol. Microbiol., 1998, vol. 27, pp. 977–985.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawano, H., Nakasone, K., Matsumoto, M., Yoshida, Y., Usami, R., Kato, C., and Abe, F., Extremophiles, 2004, vol. 8, no. 5, pp. 367–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Nakasone, K., Ikegami, A., Kawano, H., Kato, C., Usami, R., and Horikoshi, K., Extremophiles, 2002, vol. 6, no. 2, pp. 89–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Popenoe, H. and Eno, Ch., Soil Sci. Amer. Proc., 1962, vol. 26, no. 2, pp. 164–167.Google Scholar
  42. 42.
    Krasin, F. and Hutchinson, F., J. Mol. Biol., 1977, vol. 116, pp. 81–98.PubMedCrossRefGoogle Scholar
  43. 43.
    Daly, M.J. and Minton, K.W., J. Bacteriol., 1996, vol. 178, pp. 4461–4471.PubMedGoogle Scholar
  44. 44.
    Grimsley, J.K., Masters, C.I., Clark, E.P., and Minton, K.W., Int. J. Radiat. Biol., 1991, vol. 60, pp. 613–626.PubMedCrossRefGoogle Scholar
  45. 45.
    Levin-Zaidman, S., Englander, J., Shimoni, E., Sharma, A.K., Minton, K.W., and Minsky, A., Science, 2003, vol. 209, no. 5604, pp. 254–256.CrossRefGoogle Scholar
  46. 46.
    Zimmerman, J.M. and Battista, J.R., BMC Microbiol., 2005, vol. 5, p. 17.PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang, C., Wei, J., Zheng, Z., Ying, N., Sheng, D., and Hua, Y., Proteomics, 2005, vol. 5, no. 1, pp. 138–143.PubMedCrossRefGoogle Scholar
  48. 48.
    Tian, B., Zhang, S.W., Xu, Z.J., Sheng, D.H., and Hua, Y.J., Wei Sheng Wu Xue Bao, 2006, vol. 46, no. 2, pp. 238–242.PubMedGoogle Scholar
  49. 49.
    Schields, L.M., Durrell, L.W., and Sparrow, A.H., Ecology, 1961, vol. 42, no. 2, pp. 440 441.Google Scholar
  50. 50.
    Durrell, L.W. and Shields, L.M., Mycologia, 1961, vol. 43, no. 4, pp. 636–641.Google Scholar
  51. 51.
    Zhdanova, N.N., Vasilevskaya, A.I., Artyshkova, L.V., and Gavrilyuk, V.I., Mikol. Fitopatol., 1990, vol. 24, no. 4, pp. 293–308.Google Scholar
  52. 52.
    Zhdanova, N.N., Vasilevskaya, A.I., Artyshkova, L.V., and Gavrilyuk, V.I., Mikol. Fitopatol., 1990, vol. 24, no. 6, pp. 504–512.Google Scholar
  53. 53.
    Vasilevskaya, A.I., Zhdanova, N.N., and Gavrilyuk, V.I., Mikol. Fitopatol., 1993, vol. 55, no. 4, pp. 8–15.Google Scholar
  54. 54.
    Mironenko, N.V., Alekhina, A., Zhdanova, N.N., and Bulat, S.A., Envirom. Res. Ecotoxicol. Environ. Safety, 2000, vol. 45, pp. 177–187.CrossRefGoogle Scholar
  55. 55.
    Kuzin, A.M., Stimuliruyushchee deistvie ioniziruyushchego izlucheniya na biologichECKie protsessy (Stimulatory Effect of Ionizing Radiation on Biological Processes), Moscow: Atomizdat, 1977.Google Scholar
  56. 56.
    Zhdanova, N.N., Redchits, T.I., and Krendyasova, V.G., Mikol. Fitopatol., 1994, vol. 28, no. 5, pp. 8–13.Google Scholar
  57. 57.
    Zhdanova, N.N., Tugay, T., and Dighton, J., Mycol. Res., 2004, vol. 108, no. 9, pp. 1089–1096.PubMedCrossRefGoogle Scholar
  58. 58.
    Tugay, T.I., Zheltonozhskii, V.A., and Sadovnikov, V.A., Sborn. Nauch.-Issled. Inst. Yadern. Issled., 2004, vol. 2, no. 13, pp. 132–138.Google Scholar
  59. 59.
    Tugay, T.I., Zhdanova, N.N., and Redchits, T.I., Sborn. Nauch.-Issled. Inst. Yadern. Issled., 2003, vol. 10, no. 2, pp. 72–79.Google Scholar
  60. 60.
    Tugay, T.I., Zhdanova, N.N., Zheltonozhsky, V., Sadovnikov, L., and Dighton, J., Mycologia, 2006, vol. 98, no. 4, pp. 521–527.PubMedCrossRefGoogle Scholar
  61. 61.
    Tugay, T.I., Zhdanova, N.N., Zheltonozhskii, V.A., and Sadovnikov, L.V., Radiats. Biol. Radioekol., 2007, vol. 47, no. 4, pp. 457–463.Google Scholar
  62. 62.
    Tugay, T.I., Zhdanova, N.N., Zheltonozhskii, V.A., Sadovnikov, L.V., Sadovnikova, M.V., and Buzarova, E.I., Yadern. Fiz. Energet., 2006, vol. 2, no. 18, pp. 132–138.Google Scholar
  63. 63.
    Dadachova, E., Bryan, R.A., Huang, X., Moadel, T., Schweitzer, A.D., Aisen, P., and Nosanchuk, J.D., PloS ONE, 2007, vol. 5, pp. 1–13.Google Scholar
  64. 64.
    Ikushima, T., Aritomi, H., and Morista, J., Mutat. Res., 1996, vol. 358, pp. 193–198.PubMedGoogle Scholar
  65. 65.
    Schleper, C., Puhler, G., Kuhlmorgen, B., and Zillig, W., Nature, 1995, vol. 375, pp. 741–742.PubMedCrossRefGoogle Scholar
  66. 66.
    Peeples, T. and Kelly, R.M., Appl. Environ. Microbiol., 1995, vol. 61, pp. 2314–2321.PubMedGoogle Scholar
  67. 67.
    Johnson, D.B. and Hallberg, K.B., Res. Microbiol., 2003, vol. 154, pp. 466–473.PubMedCrossRefGoogle Scholar
  68. 68.
    Engle, M., Li, Y., Woese, C., and Wiegel, J., J. Syst. Bacteriol., 1995, vol. 45, pp. 454–461.Google Scholar
  69. 69.
    Krulwich, T.A., Ito, M., Hicks, D.B., Gilmour, R., and Guffanti, A.A., Extremophiles, 1998, vol. 2, p. 217.PubMedCrossRefGoogle Scholar
  70. 70.
    Zavarzin, G.A., Zhilina, T.N., and Kevbrin, V.V., Mikrobiologiya, 1999, vol. 68, pp. 579–599.Google Scholar
  71. 71.
    Jones, B.E., Grant, W.D., Duckworth, A.W., and Owenson, G.G., Extremophiles, 1998, vol. 2, pp. 191–200.PubMedCrossRefGoogle Scholar
  72. 72.
    Sorokin, D.Yu., Mikrobiologiya, 2003, vol. 72, pp. 725–739.Google Scholar
  73. 73.
    Van De Vossenberg. J, London: Albers S.-V., Driessen A.J.M., Konings W.N. // Extremophiles, 2001.Google Scholar
  74. 74.
    Horikoshi, K., Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 735–750.PubMedGoogle Scholar
  75. 75.
    Madern, D., Ebel, C., and Zaccai, G., Extremophiles, 2000, vol. 4, pp. 91–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Oren, A., Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 334–348.PubMedGoogle Scholar
  77. 77.
    Pfluger, K. and Muller, V., J. Bioenerg. Biomembranes, 2004, vol. 36, pp. 17–24.CrossRefGoogle Scholar
  78. 78.
    Zhilina, T.N., Zavarzin, G.A., Detkova, E.N., and Rainey, F.A., Curr. Microbiol., 1996, vol. 32, pp. 320–326.PubMedCrossRefGoogle Scholar
  79. 79.
    Ventosa, A., Nieto, J.J., and Oren, A., Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 504–544.PubMedGoogle Scholar
  80. 80.
    Oren, A., Heldal, M., Norland, S., and Galinski, E.A., Extremophiles, 2002, vol. 6, pp. 491–498.PubMedCrossRefGoogle Scholar
  81. 81.
    Detkova, E.N. and Boltyanskaya, Yu.V., Mikrobiologiya, 2006, vol. 75, no. 3, pp. 312–319.Google Scholar
  82. 82.
    Boltianskaia, Iu.V., Detkova, E.N., Shumskii, A.N., Dulov, L.E., and Pusheva, M.A., Mikrobiologia, 2005, vol. 74, no. 6, pp. 738–44.Google Scholar
  83. 83.
    Gandbhir, M., Rashed, I., Marliere, P., and Mutzel, R., Res. Microbiol., 1995, vol. 146, pp. 113–120.PubMedCrossRefGoogle Scholar
  84. 84.
    Nies, D.H., Extremophiles, 2000, vol. 4, pp. 77–82.PubMedCrossRefGoogle Scholar
  85. 85.
    Grass, G., Grobe, C., and Nies, D.H., J. Bacteriol., 2000, vol. 182, pp. 1390–1398.PubMedCrossRefGoogle Scholar
  86. 86.
    Nies, D.H., Appl. Microbiol. Biotechnol., 1999, vol. 51, no. 6, pp. 730–750.PubMedCrossRefGoogle Scholar
  87. 87.
    Seckbach, J., Baker, F.A., and Shugarman, P.M., Nature, 1970, vol. 227, pp. 744–745.PubMedCrossRefGoogle Scholar
  88. 88.
    Nies, D.H. and Silver, S., J. Ind. Microbiol., 1995, vol. 14, no. 2, pp. 186–199.PubMedCrossRefGoogle Scholar
  89. 89.
    Podar, M. and Reysenbach, A.L., Curr. Opin. Chem. Biol., 2006, vol. 17, pp. 250–255.Google Scholar
  90. 90.
    Atomi, H., Curr. Opin. Chem. Biol., 2005, vol. 9, pp. 166–173.PubMedCrossRefGoogle Scholar
  91. 91.
    Gomes, J. and Steiner, W., Food Technol. Biotechnol., 2004, vol. 42, pp. 223–235.Google Scholar
  92. 92.
    Schiraldi, C. and DeRosa, M., Trends Biotechnol., 2002, vol. 20, pp. 515–521.PubMedCrossRefGoogle Scholar
  93. 93.
    de Chamdore, M., Staiano, M., Rossi, M., and D’Auria, S., J. R. Soc. Interface, 2007, vol. 4, pp. 183–191.CrossRefGoogle Scholar
  94. 94.
    Krahe, M., Antranikian, G., and Markl, H., FEMS Microbiol. Rev., 1996, vol. 18, pp. 271–285.CrossRefGoogle Scholar
  95. 95.
    Antranikian, G., Vorgias, C.E., and Bertoldo, C., Adv. Biochem. Engin. Biotechnol., 2005, vol. 96, pp. 219–262.Google Scholar
  96. 96.
    Brown, S.H., Costantino, H.R., and Kelly, R.M., Appl. Environ. Microbiol., 1990, vol. 56, pp. 1985–1991.PubMedGoogle Scholar
  97. 97.
    Jorgensen, S., Vorgias, C.E., and Antranikian, G., J. Biol. Chem., 1997, vol. 272, pp. 16335–16342.PubMedCrossRefGoogle Scholar
  98. 98.
    Koch, R., Spreinat, K., Lemke, K., and Antranikian, G., Arch. Microbiol., 1991, vol. 155, p. 572.CrossRefGoogle Scholar
  99. 99.
    Bragger, J.M., Daniel, R.M., Coolbear, T., and Morgan, H.W., Appl. Microbiol. Biotechnol., 1989, vol. 31, pp. 556–561.CrossRefGoogle Scholar
  100. 100.
    Kim, J.W., Flowers, L.O., Whiteley, M., and Peeples, T.L., Folia Microbiol., 2001, vol. 46, pp. 467–473.CrossRefGoogle Scholar
  101. 101.
    Piller, K., Daniel, P.M., and Petach, H.H., Biochim. Biophys. Acta, 1996, vol. 1292, pp. 197–205.PubMedGoogle Scholar
  102. 102.
    Galichet, A. and Belarbi, A., FEBS Lett., 1999, vol. 458, pp. 188–192.PubMedCrossRefGoogle Scholar
  103. 103.
    Leveque, E., Janecek, S., and Belarbi, H.B., Enz. Microbiol. Technol., 2000, vol. 26, pp. 3–14.CrossRefGoogle Scholar
  104. 104.
    Rolfsmeier, M., Haseltine, C., Bini, E., Clark, A., and Blum, P., J. Bacteriol., 1998, vol. 180, pp. 1287–1295.PubMedGoogle Scholar
  105. 105.
    Brown, S.H. and Kelly, R.M., Appl. Environ. Microbiol., 1993, vol. 59, pp. 2614–2621.PubMedGoogle Scholar
  106. 106.
    Kengen, S.W.M., Luesink, E.J., Stams, A.J.M., and Zehnder, A.J.B., Eur. J. Biochem., 1993, vol. 213, pp. 305–312.PubMedCrossRefGoogle Scholar
  107. 107.
    Matsui, I., Sakai, Y., Matsui, E., Kikuchi, H., Kawarabayasi, Y., and Honda, K., FEBS Lett., 2000, vol. 467, pp. 195–200.PubMedCrossRefGoogle Scholar
  108. 108.
    Duffaud, G.D., McCutchen, C.M., Leduc, P., Parker, K.N., and Kelly, R.M., Appl. Environ. Microbiol., 1997, vol. 63 P, pp. 169–177.Google Scholar
  109. 109.
    Machielsen, R., Uria, A.R., Kengen, S.W.M., and van der Oost, J., Appl. Environ. Microbiol., 2006, vol. 72, pp. 233–238.PubMedCrossRefGoogle Scholar
  110. 110.
    Mori, K. and Ishikawa, K., Biosci. Biotech. Biochem., 2005, vol. 69, pp. 1854–1860.CrossRefGoogle Scholar
  111. 111.
    Lee, H.S., Kim, Y.J., Bae, S.S., Jeon, J.H., Lim, J.K., Jeong, B.C., Kang, S.G., and Lee, J.H., Appl. Environ. Microbiol., 2006, vol. 72, pp. 1886–1890.PubMedCrossRefGoogle Scholar
  112. 112.
    Story, S.V., Shah, C., Jenney, F.E., and Adams, M.W.W., J. Bacteriol., 2005, vol. 187, pp. 2077–2083.PubMedCrossRefGoogle Scholar
  113. 113.
    Gueguen, Y., Voorhorst, W.G.B., van der Oost, J., and de Vos, W.M., J. Biol. Chem., 1997, vol. 272, pp. 31258–31264.PubMedCrossRefGoogle Scholar
  114. 114.
    Hansen, T., Reichstein, B., Schmid, R., and Schonheit, P., J. Bacteriol., 2002, vol. 184, pp. 5955–5965.PubMedCrossRefGoogle Scholar
  115. 115.
    Margesin, R. and Schinner, F., Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 650–663.PubMedCrossRefGoogle Scholar
  116. 116.
    Schumacher, K., Heine, E., and Hocker, H., J. Biotechnol., 2001, vol. 89, pp. 281–288.PubMedCrossRefGoogle Scholar
  117. 117.
    Bezborodov, A.M., Zagustina, N.A., and Popov, V.O., Fermentativnye protsessy v biotekhnologii (Enzymatic Processes in Biotechnology), Moscow: Nauka, 2008.Google Scholar
  118. 118.
    D’Auria, S., DiCesare, N., Staiano, M., Gryczynski, Z., Rossi, M., and Lakowicz, J.R., Anal. Biochem., 2002, vol. 303, pp. 138–144.PubMedCrossRefGoogle Scholar
  119. 119.
    D’Auria, S., DiCesare, N., Gryczynski, Z., Rossi, M., and Lakowicz, J.R., Biochem. Boiphys. Res. Communs., 2000, vol. 274, pp. 727–731.CrossRefGoogle Scholar
  120. 120.
    D’Auria, S., Rossi, M., Herman, P., and Lakowicz, J.R., Boiphys. Chem., 2000, vol. 84, pp. 167–176.CrossRefGoogle Scholar
  121. 121.
    Lentzen, G. and Schwarz, T., Appl. Microbiol. Biotechnol., 2006, vol. 72, pp. 623–634.PubMedCrossRefGoogle Scholar
  122. 122.
    Kurz, M., Saline Systems, 2008, vol. 4, no. 6, pp. 1–14.Google Scholar
  123. 123.
    Allison, S.D. and Anchordoquy, T.J., J. Pharm. Sci., 2000, vol. 89, pp. 682–691.PubMedCrossRefGoogle Scholar
  124. 124.
    Louis, P., Truper, H.G., and Galinski, E.A., Appl. Microbiol. Biotechnol., 1994, vol. 41, pp. 684–688.CrossRefGoogle Scholar
  125. 125.
    Hoeckstra, F.A., Wolkers, W.F., Buitink, J., Golowina, E.A., Crowe, J.H., and Crowe, L.M., Comp. Biochem. Physiol., 1997, vol. 116A, pp. 335–341.CrossRefGoogle Scholar
  126. 126.
    Barth, S., Huhn, M., Matthey, B., Klimka, A., Galinski, E.A., and Engert, A., Appl. Environ. Microbiol., 2000, vol. 66, pp. 1572–1579.PubMedCrossRefGoogle Scholar
  127. 127.
    Roberts, M.F., Saline Systems, 2005, vol. 1, no. 5, pp. 1–30.Google Scholar
  128. 128.
    Leon, R., Martin, M., Vigara, J., Vilchez, C., and Vega, J.M., Biomol. Eng., 2003, vol. 20, nos. 4–6, pp. 177–182.PubMedCrossRefGoogle Scholar
  129. 129.
    Jin, E., Feth, B., and Melis, A., Biotechnol. Bioeng., 2003, vol. 81, no. 1, pp. 115–124.PubMedCrossRefGoogle Scholar
  130. 130.
    White, A.L. and Jahnke, L.S., Plant Cell Physiol., 2002, vol. 43, no. 8, pp. 877–884.PubMedCrossRefGoogle Scholar
  131. 131.
    Hieber, A.D., King, T.J., Morioka, S., Fukushima, L.H., Franke, A.A., and Bertram, J.S., Nutr. Cancer, 2000, vol. 37, no. 2, pp. 234–244.PubMedCrossRefGoogle Scholar
  132. 132.
    Roling, W.F.M. and van Verseveld, H.W., Appl. Environ. Microbiol., 1996, vol. 62, pp. 1203–1207.PubMedGoogle Scholar
  133. 133.
    Nichols, D.S. and Russell, N.J., Arch. Microbiol., 1999, vol. 145, pp. 767–779.Google Scholar
  134. 134.
    Aislabie, J., Saul, D.J., and Foght, J.M., Extremophiles, 2006, vol. 10, no. 3, pp. 171–179.PubMedCrossRefGoogle Scholar
  135. 135.
    Delille, D. and Gleizon, F., Mar. Pollut. Bull., 2003, vol. 46, no. 9, pp. 1179–1183.PubMedCrossRefGoogle Scholar
  136. 136.
    Snape, E. and Redman, T., J. Appl. Psychol., 2003, vol. 88, no. 1, pp. 152–159.PubMedCrossRefGoogle Scholar
  137. 137.
    Valls, M. and de Lorenzo, V., FEMS Microbiol. Rev., 2002, vol. 26, pp. 327–338.PubMedGoogle Scholar
  138. 138.
    Fredrickson, J.K., Kostandarithes, H.M., Li, S.W., Plymale, A.E., and Daly, M.J., Appl. Environ. Microbiol., 2000, vol. 66, pp. 2006–2011.PubMedCrossRefGoogle Scholar
  139. 139.
    Gadd, G.M. and White, C., J. Chem. Technol. Biotechnol., 1992, vol. 55, pp. 39–44.CrossRefGoogle Scholar
  140. 140.
    White, C. and Gadd, G.M., J. Chem. Technol. Biotechnol., 1990, vol. 49, pp. 331–343.PubMedCrossRefGoogle Scholar
  141. 141.
    Apte, S.K. and Thomas, J., Plant Soil, 1997, vol. 189, pp. 205–211.CrossRefGoogle Scholar
  142. 142.
    Sugino, M., Hibino, T., Tanaka, Y., Nii, N., and Takabe, T., Plant Sci., 1999, vol. 146, pp. 81–88.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. V. Morozkina
    • 1
  • E. S. Slutskaya
    • 1
  • T. V. Fedorova
    • 1
  • T. I. Tugay
    • 2
  • L. I. Golubeva
    • 1
  • O. V. Koroleva
    • 1
  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Zabolotnuy Institute of Microbiology and VirologyNational Academy of SciencesKievUkraine

Personalised recommendations